Advances in Medical Physics
2014
Volume 5

Edited by

Devon J. Godfrey
Duke University

Shiva K. Das
Duke University

Anthony B. Wolbarst
University of Kentucky

MEDICAL PHYSICS PUBLISHING
Madison, Wisconsin
Dedication

Volume 5 of Advances in Medical Physics is dedicated with great appreciation and affection to Bill Hendee in celebration of his retirement. Bill is a wonderful friend to all of us who have had the exceptional good fortune to know him.

“If your actions inspire others to dream more, learn more, do more and become more, you are a leader.”
–John Quincy Adams
Contents

Volume 5

Preface ix
Contributors xi
Contents of Previous Volumes of Advances in Medical Physics xiii

2006 xiii
2008 xiii
2010 xiv
2012 xv

1 Stereotactic Radiotherapy for Breast Cancer: GammaPod™ 1
Elizabeth Nichols, Yildirim D. Mutaf, Steven Feigenberg, and Cedric Yu

2 Gold Nanoparticles in Radiation Therapy 13
Ross Berbeco

3 Intra-fraction Motion in Radiation Oncology 21
David H. Thomas and Daniel A. Low

4 Heavy Ion Therapy 45
Bijan Arjomandy

5 Methods and Techniques for Comprehensive 3D Dosimetry 69
Mark Oldham

6 Passive Dosimeters for Personnel and Patient Dosimetry 87
Steven J. Goetsch

7 The Role and Impact of the ICRP in Medicine 99
Claire Cousins

8 The Role of the International Atomic Energy Agency (IAEA) in Global Medical Physics Activities 107
Jacob Van Dyk and Ahmed Meghzifene

9 Novel X-ray Photonics for Medical X-ray Imaging 123
Susanne M. Lee, Sudeep Mandal, Brian Scherer, and Peter Edic

10 In-line Phase-sensitive X-ray Imaging 143
Da Zhang, Fanbo Meng, John Rong, Xixeng Wu, and Hong Liu
11 Parallel Imaging: Moving Beyond the Use of Gradients for Spatial Encoding..........171
 Nathan E. Yanasak and Anthony B. Wolbarst

12 MRI Sequences Above and Beyond Spin-echo ..199
 Ronald R. Price and Anthony B. Wolbarst

13 Advances in PET Imaging ..217
 Osama Mawlawi and Thomas Beyer

14 Advances in Cardiac SPECT ...235
 Mark Madsen

15 MRI of the One-dimensional Patient, Part I: A Gentle Approach to Teaching
 a Challenging Subject to Scientists and Engineers ..247
 Anthony B. Wolbarst, Kevin F. King, Ron Price, Charles Smith, and Nathan Yanasak
This is the fifth volume in the biennial series *Advances in Medical Physics*, designed to help medical physicists, technically inclined physicians, and other professionals stay current in medical radiation science and technology—and in particular, in sub-fields of medical physics other than their own.

Volume 5 contains an expanded focus on radiation oncology topics, including the new GammaPod 60Co device for breast radiosurgery, the allure of targeted dose enhancement via gold nanoparticles, strategies and devices for respiratory motion management, proton therapy fundamentals, and novel high-resolution 3D dosimeters that can be employed for the precise dose verification of complex treatment plans.

Radiation protection subjects include the role of the ICRP and IAEA in medicine and a comprehensive review of the many types of dosimeters available for monitoring personnel exposure.

Finally, the field of imaging is well represented, as always, with fascinating chapters highlighting novel x-ray photonics and phase contrast imaging technologies, state-of-the-art PET and cardiac SPECT implementations, the fundamentals of parallel MRI, advanced MRI sequences, and the first part of a suggested road map for teaching MRI to engineering and medical physics students.

The editors of AMP–2014
Devon Godfrey, Shiva Das, and Anthony Wolbarst
July 2014
Contributors

Bijan Arjomandy
Senior Proton Medical Physicist
McLaren Proton Therapy Center
Flint, MI
bijan.arjomandy@mclaren.org

Ross Berbeco
Associate Professor
Department of Radiation Oncology
Brigham and Women’s Hospital
Dana-Farber Cancer Institute
Harvard Medical School
Boston, MA
rberbeco@rics.harvard.edu

Thomas Beyer
Professor and Deputy Director
Center for Medical Physics and Biomedical Engineering
Medical University of Vienna
Vienna, Austria
thomas.beyer@meduniwien.ac.at

Claire Cousins
Chair
International Commission on Radiological Protection (ICRP)
Consultant Interventional Radiologist
Addenbrooke’s Hospital
Cambridge, UK
claire.cousins@addenbrookes.nhs.uk

Shiva Das
Professor
Department of Radiation Oncology
Duke University Medical Center
Durham, NC
shiva.das@duke.edu

Peter Edic
Principal Engineer
CT, X-ray and Functional Imaging Laboratories
GE Global Research
Niskayuna, NY
edic@ge.com

Steven Feigenberg
School of Medicine
University of Maryland
Baltimore, MD
sfeigenberg@umm.edu

Devon J Godfrey
Assistant Professor
Department of Radiation Oncology
Duke University Medical Center
Durham, NC
devon.godfrey@duke.edu

Steven J. Goetsch
Senior Medical Physicist
Dade Moeller Health Group
Solana Beach, CA
stevegoetsch@dgkc.com

Kevin F. King
Senior Scientist
GE Healthcare
Waukesha, WI
kevin.f.king@med.ge.com

Susanne M. Lee
Senior X-ray Detector Engineer
Radiography Inspection Technologies
General Electric Measurement and Control
Troy, NY
lees@ge.com

Hong Liu
Professor and Smith Chair in Biomedical Engineering
School of Electrical and Computer Engineering
University of Oklahoma
Norman, OK
lhliu@ou.edu
Contents of Previous Volumes of Advances in Medical Physics

Volume 1–2006

1 Digital Radiography and Fluoroscopy
 Wei Zhao, Katherine P. Andriole, and Ehsan Samei*

2 Mammography and Other Breast Imaging Techniques
 Libby Brateman* and Andrew Karellas

3 Computed Tomography
 Thomas G. Flohr, Dianna D. Cody, and Cynthia H. McCallough*

4 Nuclear Medicine
 Robert E. Zimmerman* and Michael King

5 Magnetic Resonance Imaging
 John B. Weaver*, Douglas J. Ballon, and Anthony B. Wolbarst

6 Medical Ultrasonic Imaging
 Jeffrey Brian Fowlkes* and Anthony B. Wolbarst

7 Molecular Imaging
 Xavier Michaelis*, Laurent A. Bentolila, and Shimon Weiss

8 Overview of Medical Imaging Informatics
 Katherine P. Andriole

9 Evolving and Experimental Technologies in Medical Imaging
 Anthony B. Wolbarst* and William R. Hendee

10 Biological Effects of Low Doses of Ionizing Radiation

11 Radiation Therapy
 Laurence E. Court and Lee M. Chin*

12 Magnetic Nerve Stimulation
 Anthony T. Barker

Volume 2–2008

1 Digital Radiography, Mammography, and Fluoroscopy
 J. Anthony Seibert

2 Image Display Systems
 Ehsan Samei* and Aldo Badano

3 CT, PET, and SPECT Reconstruction Algorithms
 David S. Lalush

4 CT Quality Control
 Dianna D. Cody*, Donna M. Stevens, and John Rong
5 CT Doses
Michael F. McNitt-Gray

6 MRI Update
Michael C. Steckner

7 The Principles of Quantitative MRI
Geoffrey D. Clarke and Yongsook Lee

8 Molecular Imaging: Physics and Bioapplications of Quantum Dots
Xavier Michalet, Laurent A. Bentolila, and Shimon Weiss

9 Finite Training of Radiologists and Statistical Learning Machines: Parallel Lessons
Robert F. Wagner, Waleed A. Yousef, and Weijie Chen

10 Computer-Aided Detection/Computer-Aided Diagnosis
Maryellen L. Giger

11 Health Risks of Exposure to Low Doses of Ionizing Radiation
Kenneth L. Mossman and Mandana M. Behbahani

12 Image-Guided Radiation Therapy
J. Daniel Bourland

13 Stereotactic Radiosurgery
Marc Edwards and Scott Sorensen

14 Treatment Plan Optimization: An Elusive Goal
James E. Rodgers

15 Introduction to Therapy Vault Shielding Design as Presented in NCRP Report No. 151
Kenneth L. Mossman and Mandana M. Behbahani

16 Regulation in Medicine: The Nuclear Regulatory Commission’s Expanding Role in Radiation Safety and Security
Gregory B. Jaczko

17 Some Perspectives and Insights from Modern Statistical Modeling
Donald E. Herbert

18 The National Institute of Biomedical Imaging and Bioengineering and NIH Grant Process: An Overview
Anthony B. Holobar and William R. Hendee

Volume 3–2010

1 Digital Tomosynthesis
James T. Dobbins III and H. Page McAdams

2 Recent Developments in Nuclear Medicine
Frederic H. Fahey

3 Ultrasound Elastography
Tomy Varghese

4 Artifacts in MRI
Jiachen Zhuo and Rao P. Gullapalli

5 Robotic Systems for MRI-Guided Interventions
Efthymios G. Christoforou and Nikolaos V. Tsekos

6 Quantitative Imaging Biomarkers of Cancer
John C. Gore, H. Charles Manning, Todd E. Peterson, C. Chad Quarles, Tuhin K. Sinha, and Thomas E. Yankellow

7 Perceptual Optimization of Image Quality
Elizabeth A. Krupinski
8 Image Processing for Projection Radiography
Richard VanMetter

9 Wagner's Unified Theory of Image Quality: Three Decades Later
Kyle J. Myers,* Tzacos S. Kyprianou, and Subok Park

10 Overview of Medical Imaging Informatics
George C. Kappadath,* Steve G. Langer, George C. Sakellaropoulos, Christos Alevtas, and Paul G. Nagy

11 The Computer Vision and Artificial Intelligence of CAD
Maryellen Giger* and Karen Drukker

12 Medical Physics Criteria for Performance Excellence
Edward S. Sternick

13 Ultrasound Quality Control
Evan Boote* and Sandra Larson

14 Quality Control in Mammography
Douglas Pfeiffer

15 Medical Radiation and Pregnancy
Dr. Claire Cousins

16 Programs in Place to Protect the Public from Unnecessary Radiation Exposure from X-Ray Sources
Jill A. Lipari

17 Radiation Shielding for CT Scanners
S. Cheenu Kappadath* and John Rong

18 Medical Response to a Major Radiologic Emergency: A Primer for Medical and Public Health Practitioners
Anthony B. Wolbarst,* Albert L. Wiley, Jr., Jeffrey B. Nimhauer, Daron M. Christensen, and William R. Hendee

Volume 4–2012

1 Imaging in Modern Radiation Oncology
John F. Gleason, Jr., M.D., Ulrich Langer, Ph.D., and Ronald C. McGarry, M.D., Ph.D.*

2 Recent Developments in Fluoroscopic Imaging Systems
Barry Belanger, Ph.D.

3 Fluoroscopy System Acceptance and Quality Control Testing
Beth A. Schueler, Ph.D.* and Kenneth A. Fetterly, Ph.D.

4 Advances in CT
Thomas G. Flach, Ph.D.* and Bernhard T. Schmidt, Ph.D.

5 Computed Tomography (CT) Scan Acquisition Settings: Trade-Offs Among Speed, Resolution, and Dose.
James M. Koffler, Ph.D.

6 New Dosimetric Concepts and Measurement Methods in Computed Tomography
Robert L. Drum, Ph.D.*, John M. Boane, Ph.D., and Richard L. Marvin, Ph.D.

7 An Approach to Assessing Stochastic Radiogenic Risk in Medical Imaging†
Anthony B. Wolbarst, Ph.D.* and William R. Hendee, Ph.D.

8 Recent Progress in Positron Emission Tomography for Small-Animal Imaging
Simon R. Cherry, Ph.D.

9 Molecular Imaging and Tomography with Near-Infrared Fluorescence
Eva M. Sevick-Muraca, Ph.D.

10 Diffusion Tensor Imaging: Neuroscience Applications
David Powell, Ph.D.* and Charles Smith, M.S.E.E., M.D.
11 Current Issues in MRI Safety
Michael C. Steckner, Ph.D., M.B.A.

12 Developments in Ultra-High-Field MRI
Adam W. Anderson, Ph.D.* and John C. Gore, Ph.D.

13 Recent Advances in Ultrasonic Imaging and Ultrasonic Imaging Technology
Jeremy J. Dahl, Ph.D.* and Gregg E. Trahey, Ph.D.

14 2D and 3D Data Acquisition in Ultrasound
James A. Zagzebski, Ph.D.

15 The AAPM in Service to the Medical Physics Community
J. Anthony Seibert, Ph.D.

16 The Role of the Conference of Radiation Control Program Directors (CRCPD) in Radiation Protection in the United States

17 Medical Exposures to Ionizing Radiation: Important Developments Since NCRP Report No. 160
David Schauer, Sc.D., C.H.P., Jerrold T. Bushberg, Ph.D., Stephen Balter, Ph.D., and James A. Brink, M.D.

18 Radioactive Materials Regulatory Programs for Protection of Public, Workers, and Environment and for Security to Prevent Malevolent Use
Steven C. Collins, M.S.* and Charles Simmons, M.S., J.D.

19 Consequences of a Nuclear Detonation
John MacKinney* and Dr. John Mercier, COL (Ret.), PMP

20 Risk Communication: Principles, Strategies, Tools, and Applications
Vincent T. Covello, Ph.D.
Passive Dosimeters for Personnel and Patient Dosimetry

Steven J. Goetsch, Ph.D.
Senior Medical Physicist
Dade Moeller Health Group
Solana Beach, CA

6.1 Introduction .. 88
6.1.1 Physical Principles ... 88
6.1.2 Personnel Dosimetry Standards ... 88

6.2 Radiochromic Film .. 88
6.2.1 Original Purpose and Physical Mechanism ... 88
6.2.2 Introduction to Radiology and New Films ... 89
6.2.3 Radiological Applications ... 89

6.3 Thermoluminescent Dosimeters (TLDs) .. 90
6.3.1 History of TLDs .. 90
6.3.2 Physical Processes ... 90
6.3.3 Clinical Applications .. 91

6.4 Optically Stimulated Luminescence Dosimeters (OSLD) and Radiophotoluminescent Dosimeters (RPL) ... 91
6.4.1 Physical Processes of OSLD and Similarity to TLD .. 91
6.4.2 Radiological Applications of OSLD .. 93
6.4.3 Radiophotoluminescent (RPL) Dosimetry .. 93

6.5 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Dosimeters 93
6.5.1 Physical Processes ... 93

6.6 Alarine Dosimeters (EPR) .. 95
6.6.1 Physical Processes ... 95

6.7 References .. 95
6.1 Introduction

6.1.1 Physical Principles

A dosimeter is a device that responds to ionizing radiation in some predictable manner. Attix gives this definition in his textbook on radiological physics: "A dosimeter can be defined generally as any device that is capable of providing a reading that is a measure of the absorbed dose D in deposited in its sensitive volume V by ionizing radiation." (Attix 1986). Passive dosimeters are often thought of as being synonymous with "personnel dosimeters," but more properly, passive dosimeters are those which "store" a reading in some latent form for later analysis. Active dosimeters, by contrast (e.g., cable-connected ionization chambers or diodes connected to an electrometer) give immediate visual readout of a signal, which may then require some analysis to be converted to absorbed dose. This chapter will consider recent developments in passive dosimeters, including some which have been in use for many years.

Dosimeters are a category of transducers that convert the energy latent in ionizing radiation into some quantifiable form that can be accurately converted into some measure of absorbed dose (or dose equivalent for personnel dosimeters). It is important to note that the "dose to dosimeters" is essentially irrelevant, except for degradable dosimeters such as diodes, which suffer damage with exposure to high levels of radiation. Dosimeters are, in fact, a proxy for personnel or the environment which is to be protected from the effects of ionizing radiation. No dosimeter is capable of exactly mimicking the response of human beings or animal species, but still it may provide useful estimates of the unknowable effects of absorbed radiation dose on a human being or object of interest. Many dosimeters claim to be "tissue equivalent," which usually means that their mean atomic number is similar to that of the standard four-element International Commission on Radiation Units and Measurements (ICRU) model for tissue. The ICRU specifies for a 30 cm tissue equivalent sphere a mass composition of 10.1% hydrogen, 11.1% carbon, 2.6% nitrogen, and 76.1% oxygen, with a density of 1 g/cm³ (ICRU Report 63 1993). This operational definition gave rise to dosimeters, such as the Victoreen condenser R meter which stored ionization in the form of discharged capacitors and was read out directly in Roentgen from a specialized reader/charging station.

6.2 Radiochromic Film

6.2.1 Original Purpose and Physical Mechanism

Direct color-changing (radiochromic) films which respond to ionizing radiation were first introduced in about 1970 for very high absorbed doses (10^6 to 10^7 Gray) for monitoring sterilization of food products, medical supplies, and other things. International Specialty Products (now Ashland, Inc.) introduced the first self-developing radiochromic film for radiographic purposes as Gafchromic DL-1260 (later renamed HD-810) in 1986. This film could be used in the range of 25 to 2500 Gy (double-sided emulsion), and single-sided MD-55 film was available for doses ranging from 10 to 100 Gy. American Association of Physicists in Medicine (AAPM) Report 63 of Task Group 55 described the nature of the radiochromic process and made recommendations for its clinical uses, including the subtleties of the readout process (Niroomand-Rad 1998). That reference states "Radiochromic dosimeters color directly and do not require chemical processing—a color change (colorless to blue, red, green, etc.) indicates exposure to radiation. Image formation occurs as a dye-forming or a polymerization process, in which energy is transferred from an energetic photon or particle to the receptive part of the leuco-dye or colorless photomonomer molecule, initiating color formation through chemical changes." M. L. MacGillivray and others at the National Institute of Standards and Technology (NIST) investigated the dosimetric properties of radiochromic media in photon and electron radiation therapy (MacGillivray 1988). A modern film consists of a thin active layer of microcrystalline monomeric polydiacetylene dispersion coated on a polyester film base (MacGillivray 1991). Readout of these films requires either a densitometer or spectrophotometer (Klassen 1997). These authors used a spectrophotometer with a wavelength of 676 nm (deep red) and a bandpass of 3.5 nm. Care must be taken with some double emulsion films, as the polarized light from the readout
device may produce different results if the film is rotated 90 degrees before scanning. In recent years, more sophisticated spectral analysis techniques divided the film coloration up into two or three color bands.

6.2.2 Introduction to Radiology and New Films

Products were introduced later with increased sensitivities, such as HS for high-energy photon beams above 1 MeV and XR-T for low-energy photon beams below 0.1 MeV (Devic 2004). Investigators with access to high-quality spectral microdensitometers were able to separately measure the transmittance of the radiochromic film (RCF) in two different spectral peaks, one at about 610 nm and the other at about 672 nm, to extend the dynamic range of the system (Lee 2005). A new model designated as EBT radiochromic film was introduced in 2005 with improved flatness and symmetry, which had been somewhat problematic in earlier films. The film was immediately applied to intensity-modulated radiation therapy (IMRT) patient QA measurements. A newer version called EBT2 (Figure 6–1a) was introduced in 2009 which added a yellow dye (Lindsay 2010), that successfully decreased the sensitivity of the film to visible light, although the active component of the film was unchanged. The authors noted that the energy response of the film drifted over time from batch to batch and tended to under-respond up to 20% at 105 kVp due to variation in the amount of chlorine incorporated in the film. Another group of authors found lower energy dependence with the new EBT2 film in the high-energy range (Hat within ±0.6% from 100 keV to 18 MeV (Sutherland 2010)). However, they found an energy response that varies by 10% to 50% at low photon energies, depending on the batch. Another study showed inhomogeneity within the same piece of film causing dose uncertainties across the film of nearly 9% at 1 Gy (Hartmann 2010). EBT2 film has a single active layer 30 µm in thickness, while the older EBT formulation had two layers 17 µm thick and a second layer only 8 µm thick. The new type MD-V3 film, with an active layer 15 µm thick, is designed for use with high-energy photons in the dose range of 1 to 100 Gy. It is a replacement for MD-V2-55. A special film called RTQA2 was developed for quality assurance in radiation therapy, such as radiation field/light field alignment measurements, star shots, and brachytherapy QA films (Figure 6–1c). It has a dynamic range from 0.02 to 8 Gy with an active layer 17 µm thick and a quoted spatial resolution of 5000 dpi.

The use of EBT2 film has been reported for such diverse applications as synchrotron radiation (Brown 2012), mailed dosimetry for Radiation Therapy Oncology Group (RTOG) lung protocols (Key 2013), and dose re-optimization in radia-

![Figure 6–1a](image1)

Figure 6–1a. Five-layer EBT2 and b) three-layer EBT3 laminated films. c) Configuration and structure of five-layer laminated Gelchromic RTQA2 film. It is made by laminating an active layer between two polyester layers, which allows water immersion. (Courtesy of Ashland, Inc.)

6.2.3 Radiological Applications

Within the last two years, three new radiochromic film types have been introduced: Gelchromic HD-V2 is designed for the quantitative measurement of high-energy photons, protons, and electrons in the range of 10 to 1000 Gy with an active layer only 8 µm thick. The new type MD-V3 film, with an active layer 15 µm thick, is designed for use with high-energy photons in the dose range of 1 to 100 Gy. It is a replacement for MD-V2-55. A special film called RTQA2 was developed for quality assurance in radiation therapy, such as radiation field/light field alignment measurements, star shots, and brachytherapy QA films (Figure 6–1c). It has a dynamic range from 0.02 to 8 Gy with an active layer 17 µm thick and a quoted spatial resolution of 5000 dpi.

The use of EBT2 film has been reported for such diverse applications as synchrotron radiation (Brown 2012), mailed dosimetry for Radiation Therapy Oncology Group (RTOG) lung protocols (Key 2013), and dose re-optimization in radi-
tion therapy to take account of the cumulative dose from cone-beam CT scans during treatment (Akino 2012). A recent manuscript compared two arc-therapy plans, one with 6 MV x-rays using conventional dose delivery versus similar plans using 10 MV flattening filter-free x-rays (Ong 2012). Some authors have noted that modern flatbed scanners can spectroscopically analyze the radiochromic film in red, blue, and green channels, which may be interrogated separately to further analyze dose response (Mcke 2011).

In conclusion, radiochromic films have earned an important place in passive dosimetry as the ascending standard in 2D dosimetry. With the demise of x-ray film processors, the self-developing nature of these films and their admirable dosimetric qualities and wide variety of film types assure their status as important assets in the arsenal of the modern 21st century radiological physicist.

6.3 Thermoluminescent Dosimeters (TLDs)

6.3.1 History of TLDs

The history of using thermoluminescence as a dosimeter goes back to the early 1950s when Professor Farrington Daniels of the University of Wisconsin consulted with the Atomic Energy Commission on dosimetry for open-air nuclear weapons testing. It was known that certain inorganic materials stored energy in electron traps which would later be given off, in the form of light, upon heating. The bequest of a single jar of lithium fluoride from Harshaw Chemical Company (Solon, OH) to newly arrived Professor of Physics and Radiology John Cameron led to the invention of TLD 100, TLD 600, and TLD 700, each named for the dominant lithium nuclide (Cameron 1961, 1964). TLD 100 uses natural lithium, with about 92.5% abundance of ^7Li and 7.5% abundance of ^6Li. Since ^7Li readily absorbs neutrons (making it a valuable material for nuclear weapons) TLD 600 (with enriched levels of ^7Li) is sensitive to neutrons, while TLD 700 (with most of the ^7Li removed) is relatively insensitive to neutrons but remains sensitive to photons. TLD 100 is sensitive to both neutrons and photons. Each of these formulations relies on doping with parts per million of magnesium and titanium. Serendipitously, a replacement for the original jar of lithium fluoride from Harshaw Chemical Company allowed local institutional standards to be compared to a national standard with an accuracy of about 1.5% (nearly 2500 reported measurements with an overall average of mailed results to local standards of 0.999 for photons and 1.020 for electrons). Sometimes problems at the 5% or higher level were detected, including one very unfortunate series in a high-altitude center where a miscalibrated barometer led to the overdosing of many patients. Years of on-site visits by RPC physicists and annual TLD mailed dosimetry led to a significantly tighter agreement nationwide on the value of absorbed dose, leading to the role of the RPC as gatekeeper for Radiation Therapy Oncology Group (RTOG) national radiation therapy protocols.

There has been very little progress in the field of thermoluminescent dosimetry for many years in terms of new phosphors or new readout methods. A number of phosphors (TLD-300 based on calcium fluoride doped with thulium; TLD-800 lithium borate doped with manganese; TLD-900 calcium sulphate doped with dysprosium; magnesium silicate doped with terbium) have been introduced and found niche uses. However, the original family of TLD dosimeters have proved remarkably adept at providing useful information in the most advanced radiation therapy techniques of the early 21st century.

6.3.2 Physical Processes

Thermoluminescence occurs in many materials, thousands of which occur naturally, making them extraordinarily useful in archeological dating of pottery and bone fragments. A crystal such as LiF or CaF$_2$ can be doped with parts per million of an impurity, such as magnesium or titanium, to produce trapping centers and luminescence centers. These centers provide metastable states several electron volts above ground level.
An electron may be promoted to these levels by absorbing energy from ionizing radiation and remain trapped in these states. Some of these electrons fall down to the ground state due to random thermal energy, while others remain trapped there until deliberately released in a specially designed heater or laser readout device (Figure 6–2a). Typically, samples are stored for 24 hours to let natural fading take place. Subsequently, TLDs suffer from fading over a period of days or months. This process is irreversible—the TLD dosimeter can only be read out one time. Heating up a TL material at a fixed rate produces a “glow curve” which can be integrated by a photometer. TLD-100 has five well-characterized peaks (Harvey 2011) (Figure 6–2b).

6.3.3 Clinical Applications

One group of researchers in Switzerland used TLD 100 (Thermo Fisher Scientific, Waltham, MA) in an Alderson RANDO phantom (Radiology Support Devices, Long Beach, CA) to measure scattered dose outside the target of radiation therapy volumes with seven different linear accelerator systems (Hälg 2012). The authors were able to reach a number of useful conclusions:

- flattening filter-free irradiation techniques showed the least amount of stray dose;
- IMRT techniques resulted in stray doses which scaled well with the total monitor units applied;
- the use of hard wedges instead of dynamic wedges caused a significant increase in stray dose, and
- stray dose was higher for the Accuray Cyberknife than for the Accuray Tomotherapy or other rotational linacs.

Other investigators in London used TLDs to measure skin dose for patients undergoing radiation therapy with a 50 kV dedicated x-ray breast intraoperative irradiation device (TARGIT trial) (Eaton 2011). A team from the University of California–Davis assessed skin dose effects from the use of a brass mesh for chest wall irradiation patients (instead of the normal tissue-equivalent bolus) using TLD dosimeters for all 16 patients. Four had both TLD and MOSFET dosimeters, which agreed reasonably well with each other (Healy 2012).

Another group from Sydney, Australia, studied the dose enhancement from repeated use of megavoltage cone-beam CT to position patients for radiation therapy of the breast (Quinn 2012). They found that a weekly MV CBCT scan contributed 0.5% and 17%, respectively, to the total ipsilateral and contralateral breast dose, which could lead to a statistically noticeable increase in a radiation-induced second tumor.

6.4 Optically Stimulated Luminescence Dosimeters (OSLD) and Radiophotoluminescent Dosimeters (RPL)

6.4.1 Physical Processes of OSLD and Similarity to TLD

Optically stimulated luminescence is a process that has been known since at least 1985 when it was applied to quartz.
Archeological samples before it was applied to radiation dosimetry beginning about 1999 (Jursinic 2007). The optically stimulated luminescence phenomena closely resembles thermoluminescence, with the important difference that OSL dosimeters can be stimulated by light and read out repeatedly, even during the irradiation process, making them near real-time dosimeters. This was actually a serendipitous discovery when early samples of aluminum oxide were prepared as TL-Ds and suffered seriously from accidental bleaching of signal by visible light. The recombination centers in aluminum oxide are created primarily by oxygen vacancies and are called F centers, between the valence and conduction band. TL and OSL are therefore competing effects in the same material. Some low-energy electron traps can be triggered (with resulting light emission) by ambient room temperatures, while others are triggered in the heated pan of a TL reader. The OSL effect was used to create OSLDs which have a peak of effective stimulation at wavelength of about 475 nm. These dosimeters can be read out in either the continuous wave (CW) mode or in pulsed mode.

Natural samples exhibiting OSLD properties have been replaced by aluminum oxide samples doped with carbon (Al2O3;C), the same chemical formula as ruby and sapphire in its pure form. OSLD dosimeters are now available from Landauer, Inc. (Glenwood, IL) as their nanoDot™ dosimeters and microStar© readers. The dosimeters contain OSLD material inside a lightproof plastic holder and are a few millimeters thick and 10 mm x 10 mm square. Landauer supplies both National Voluntary Laboratory Accreditation Program (NAV-LAP) certified personnel dosimeters (Luxel™ and InLight™) as well as loose dosimeters for on-patient dosimetry. They have a stated energy range from 5 keV to 20 MeV and a lower limit of detection of 0.1 mGray, with a nearly isotropic energy response and very linear dose response (Figure 6–3). The dosimeters are not, however, very tissue equivalent.

The Risø National Laboratory (Roskilde, Denmark) has manufactured OSLDs small enough to fit inside a brachytherapy HDR catheter. These OSLDs can be coupled with a fiber optic

Figure 6–3. OSLD response vs. absorbed dose from 6 MV x-rays (from Jursinic 2007).

Figure 6–4. Risø National Laboratory Model TL/OSL-DA-20 reader (from Thomsen, 2004).
6. PASSIVE DOSIMETERS FOR PERSONNEL AND PATIENT DOSIMETRY

6.4.2 Radiological Applications of OSLD

One of the most interesting applications of the OSLD phenomena is a study utilizing ordinary table salt (NaCl) as an OSLD dosimeter in a contaminated village near Chernobyl, Belarus (Bennharsdottir 2012). Readings taken in a depopulated area contaminated with cesium-137 were obtained from TLD material, an airborne radioactivity detector, and grocery store table salt read from the commercial reader. All three methods were in relatively good agreement.

A recent clinical paper from Rhode Island Hospital sought to analyze the real-time dosimetry applications of OSLD in high dose-rate remote afterloading brachytherapy, moving OSLD from the passive to the active category (Tien 2012). The authors concluded that the commercial system they tested was a low-cost, reusable, very accurate system for on-patient dosimetry. Another group studied OSLDs vs. EBT2 radiochromic film and ionization chamber for use in a basic physics measurement, assessing the backscatter factor for low-energy (20 to 100 kVp) superficial x-rays (Mart 2012). All three methods gave comparable results.

Proton therapy dosimetry was also explored by the Radiological Physics Center in Houston, TX, for Bragg peak protons between 160 and 250 MeV using the nanoDot dosimeter from Landauer (Kerns 2012). With the growing popularity of proton beam radiation therapy and the highly individualized treatment plans for each patient, the necessity of finding a low-cost, reliable, and accurate dosimeter for individual patient treatment plans is very important. There is a small supralinearity from 200 cGy (1%) to 1000 cGy (5%), but it is reproducible and can be accounted for. There was little energy dependence, and in-phantom results agreed well with ionization chamber measurements. OSLD has become increasingly popular as a personnel dosimeter (Figure 6–5).

6.4.3 Radiophotoluminescent (RPL) Dosimetry

Radiophotoluminescent Dosimetry, closely related to OSLD and TLD, was first described in 1949 (Becker 1968) and has also been used in radiation oncology (Arai 2003, Petris 2002). Certain silver activated phosphate glass compounds form stable color centers (optically active point defects) when irradiated; these can then be stimulated by pulsed ultraviolet lasers to give off light (optical fluorescence) which can be measured and correlated with absorbed dose. The active volume of commercial glass rods (AGC Techno Glass, Shizuoka, Japan) is extremely small, measuring 1 mm in diameter by 0.6 mm in depth.

A group of Japanese clinicians used RPL glass rods to mount a large in vivo dosimetry study of interstitial brachytherapy patients (Nose 2008), assessing the accuracy of dosimetry calculations in 66 patients undergoing HDR treatment for pelvic malignancy, assessing a total of 1004 points. The mean agreement of measured to calculated dose was 0.98, giving high confidence to this irradiation technique and measurement device. Model GD-301 RPL glass rods were also irradiated in a 200 MeV proton beam at the National Cancer Center in Goyang, Korea, in a polymethylmethacrylate phantom (Rah 2012). The glass rods did an excellent job of duplicating the dose and crossbeam profile as measured by calibrated ionization chambers. The Center plans to employ these RPL dosimeters for in vivo dosimetry.

6.5 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Dosimeters

6.5.1 Physical Processes

MOSFET dosimeters have been employed in specialized areas of radiation dosimetry since the 1980s (Hughes 1988, Gladstone 1991, Soubra 1994). The MOSFET is a unique electronic dosimeter, since it can be deployed as a separate unit, exposed to radiation, and then returned to a readout device, much as the classic Victoreen condenser “R” meter. The MOSFET is a sandwich device with a P-type semiconductor separated from a metal gate by an insulating oxide layer (Figure 6–6a). The gate voltage necessary to allow conduction through this device is known as the threshold voltage. Upon exposure to ionizing radiation electrons, hole pairs are formed in the oxide insulating layer. The threshold voltage shift is proportional to the radiation dose absorbed in the oxide layer. These devices were first used as dosimeters for manned NASA space flights in the 1980s. The devices were custom fabricated at several universities and hospitals and began to be commercially distributed by Sicel Technologies.
which, in 2002, added the remarkable innovation of wireless technology (radio-frequency identification, or RFID) to "broadcast" the dose from implanted dosimeters (Scarantino 2005). With the bankruptcy of Sicel Technologies in 2011, the OneDose dosimeters are no longer available.

Permanently implanted RFID MOSFET dosimeters were used to compare internally measured versus planned doses for 33 breast and 29 prostate patients (Scarantino 2008) (Figure 6–6b). Since the dosimeters were permanently placed and reusable, an average of 49 measurements were reported for each breast patient and 60 measurements for each prostate patient. TN's unique concept allowed the difference between planned and daily dose to be measured for each therapy fraction, as well as to assess migration of the implanted seeds themselves. A further study implanted a single RFID MOSFET dosimeter in each of 20 patients undergoing IMRT for prostate cancer (Den 2012). Measured doses were consistently >6% above predicted doses for 3 of the 20 patients. There were no significant deviations between planned doses and those from real-time cone-beam computed tomography (CBCT) obtained at the time of treatment delivery, but all three patients had new CT scans and were replanned accordingly. MOSFET measurements of the revised plans were all consistently within 6% of the planned doses. The authors recommended the use of MOSFETs for extremely complex dose plans to assure accuracy of dose delivery. A similar report from a group of authors in Turkey used MOSFET dosimeters to verify field-in-field dosimetry for total body irradiation patients (Onal 2012). A further study at Indiana University reported MOSFET measurements for patients undergoing total body irradiation with a dedicated cobalt-60 device (Akino 2013). Feedback from fraction one allowed adjustments to be made in the final four fractions to achieve the goal of ±10% dose uniformity throughout the total body.

Japanese authors working at the National Cancer Center Hospital East proton therapy facility successfully compensated for the 26% under-response of a commercial MOSFET detector in the Bragg peak of a 190 MeV proton beam (Kohno 2011). They used the new dual temperature-compensated MOSFET TN-252RD detector (Best Medical, Ottawa) with two detectors fabricated on the same substrate with an active area of 0.2 x 0.2 mm². The MOSFET was compared in an anthropomorphic head phantom to measurements with a parallel plate ionization chamber. Results were good enough to encourage moving on to actual patient studies (Kohno 2012).

A novel experimental irradiation technique utilized the Cyberknife for experimental treatment in animals (dogs and pigs) for ablation of cardiac arrhythmias (Gardner 2012). Such cardiac disturbances, especially atrial fibrillation, affect 1 to 2% of the general U.S. population and are often treated with RF energy used to create a scar on the cardiac tissue. The radiation dose was delivered using the Synchrony mode of the Cyberknife to the beating hearts of living animals that had previously been implanted with both TLD-100 dosimeters and a catheter-placed MOSFET detector. Each dosimeter system gave dose estimates within 10% of the planned irradiation doses.

A final recent paper utilized MOSFETs in a unique study of quality control for high dose rate brachytherapy (Able 2013). The authors conducted a study on a gel prostate phantom with an iridium-192 HDR unit and 10 MOSFET dosimeters. An irradiation plan was developed for 12 needles and 129 dwell positions, which they delivered correctly 16 times, making measurements each time. Errors were then deliberately introduced into the plan (wrong patient, wrong calibration, incorrect needle placement, and others) prior to...
irradiation, and statistical process control analysis was used to analyze the results. The authors concluded that this was a viable method for quality control for HDR procedures.

6.6 Alanine Dosimeters (EPR)

6.6.1 Physical Processes

Alanine is an α amino acid, chemical formula CH₃CH(NH₂)COOH, whose L isomer is one of 20 amino acids encoded by DNA. It is nearly tissue equivalent and has the property of trapping free radicals generated by interaction with ionizing radiation (Wielopolski 1987). This dosimeter requires electron paramagnetic resonance (EPR) measurement in a specialized spectrometer to read out the absorbed dose. The EPR spectrum is the plot of the EPR signal from the unpaired electron as the spectrometer slowly increases the magnetic field, typically in the range of 0.335 tesla (3350 gauss) (Figure 6–7). Integration of this signal over a defined peak leads to the absorbed dose estimate. Alanine was originally incorporated into an agar gel to create a three-dimensional dosimeter, but most recently compact pellets of alanine as “point” dosimeters have become more popular (Far West Technologies, Goleta, CA).

Alanine pellets and thin films were assessed as dosimeters in the Ophthalmological Proton Therapy Installation in Switzerland at the Paul Scherer Institute using 62 MeV protons (Onori 1997). The dosimeters showed good agreement with ionization chamber measurements and excellent linearity of response with proton doses from 5 to 250 Gy. Alanine pellets were also used successfully to measure the 4 mm output factor of the Leksell Gamma Knife, one of the most challenging measurements in radiological physics (Mack 2002). Alanine also proved useful at the unique carbon ion facility at the Gesellschaft fur Schwerionenforschung (GSI) cyclotron in Darmstadt, Germany (Herrmann 2011). Researchers there irradiated alanine pellets 5.05 mm in diameter by either 2.27 or 0.44 mm thick) prepared by the British National Physical Laboratory (NPL) with seven monoenergetic carbon ion beams in the energy range of 89 to 400 Mev/u. The thick pellets were used in the 5 to 70 kGy range, while the thin pellets were used in the 40 to 70 kGy range. Good results were obtained after carefully determining energy calibration factors for these alanine dosimeters.

6.7 References

6. PASSIVE DOSIMETERS FOR PERSONNEL AND PATIENT DOSIMETRY

