Here is a sample chapter from *Applied Physics for Radiation Oncology* ©.

This sample chapter is copyrighted and made available for personal use only.

No part of this chapter may be reproduced or distributed in any form or by any means without the prior written permission of Medical Physics Publishing.

Click here to order this book in one of two formats:
- **soft cover** ISBN: 978-1-930524-40-8
- **eBook** ISBN: 978-1-930524-62-0

To order by phone, call 1-800-442-5778.
Table of Contents

Preface
Preface xiii

Acknowledgments
Acknowledgments xv

1. Matter and Energy 1
 Matter 1
 Force 3
 Energy 3

2. Radiation and Its Properties 7
 The Structure of an Atom 8
 Subatomic Particles 10
 Ionizing Radiation 11
 Linear Energy Transfer 12
 Electromagnetic Radiation 14
 Wave-Particle Duality 15
 Wavelength and Frequency 15

3. The Production of X-Rays 19
 The Discovery of X-Rays 19
 Collision Interactions 20
 Characteristic Radiation 22
 Radiative Interactions (Bremsstrahlung) 24
 Filters Used in Conventional X-Ray Therapy 26
Table of Contents

- Beam Direction as a Function of Incoming Electron Energy 28
- Beam Direction Dependency on X-Ray Target Design 29

4. Radiation Quality 33
- X-Ray Intensity 33
- Beam Divergence 34
- Beam Attenuation 34
- Attenuation Coefficients 41

5. X-Ray and γ-Ray Interactions with Matter 45
- Attenuation Coefficients 45
- Coherent Scatter 47
- Photoelectric Effect 48
- Compton Effect 50
- Pair Production 53
- Pair Annihilation 55
- Photonuclear Interaction 55
- Energy Absorption 57

6. Principles of Radiation Detectors 59
- Measurement of Radiation 59
- Gas Ionization Detectors 60
- How to Use a Survey Meter 65
- Scintillation Detectors 68
- Neutron Dosimeters 69
- Thermoluminescent Dosimeters 69
- Diode Detectors 73
- MOSFET Detectors 74

7. Determining Radiation Intensity 77
- The Importance of Standardized Radiation Measurement 78
- The Roentgen as a Unit of Exposure 78
- Kerma 79
- “Conventional” X-Ray Machine Calibrations 80
- Radiation Absorbed Dose 83
- The f_{medium} Factor 84
- Cavity Theory 86
- Dose Equivalent 88
12. Photon Beam Dosimetry

Dose and Distance Terms
Dose Fractionation
Quantities Used in Treatment Calculations
Backscatter Factor
Output Factor
Equivalent Square Fields
Equipment Attenuation Factors
Patient Attenuation Factors
Depth Dose
Tissue-Air Ratio (TAR)
Tissue-Maximum Ratio (TMR)
Isodose Curves
Dose Profiles
Moving Field Calculations
Computers

13. Electron Beam Dosimetry

Electron Beam Interactions
Electron Beam Characteristics
Electron Beam Profiles
Gaps and Abutting Fields
Electron Dose Measurements
Treatment Calculations
Irregularly Shaped Fields
Tissue Inhomogeneities
Inverse Square Law
14. Treatment Planning
- Tumor Targeting Vocabulary 218
- Aims of Treatment Planning 218
- What Treatment Planning Includes 220
- Patient Alignment Devices 221
- Patient Positioning Aids 222
- Body Contours 222
- Isodose Distributions 226
- Oblique Incidence Corrections to Isodose Distributions 227
- Isodose Summations 229
- Treatment Techniques 230
- Stationary or Fixed Beam Treatment 230
- Moving Fields Treatment 233
- Tissue Inhomogeneities 235
- Tissue Compensation 238
- Wedge Filters 240
- Standard Treatment Calculation 244
- Beam On Time Calculations (Timer Settings) 244
- Monitor Unit Calculations 247

15. Clinical Applications in Treatment Planning 251
- More Field Nomenclature 252
- Mixed Beams 253
- Tangents 256
- Field Weighting 260
- Normalization 260
- Non-Coplanar Beams 265
- Three-Dimensional Treatment Planning 267
- Conformal Methods 268
- IMRT 270
- IGRT 272
- Gated Radiation Therapy 272

16. Brachytherapy 277
- Introduction 278
- Radium 278
- Radium Substitutes 278
- Radioactive Sources 279
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicators</td>
<td>281</td>
</tr>
<tr>
<td>Afterloading</td>
<td>283</td>
</tr>
<tr>
<td>Single Plane, Double Plane, and Volume Implants</td>
<td>284</td>
</tr>
<tr>
<td>Permanent Implants</td>
<td>284</td>
</tr>
<tr>
<td>Implant Dosimetry</td>
<td>286</td>
</tr>
<tr>
<td>Remote High-Intensity Afterloading</td>
<td>288</td>
</tr>
<tr>
<td>Specific Implant Techniques</td>
<td>289</td>
</tr>
<tr>
<td>Radiation Safety with Implants</td>
<td>289</td>
</tr>
<tr>
<td>17. Radiation Safety</td>
<td>293</td>
</tr>
<tr>
<td>Recommendations and Regulations</td>
<td>294</td>
</tr>
<tr>
<td>Measurement of Occupational Radiation Dose</td>
<td>295</td>
</tr>
<tr>
<td>Radiation Risk</td>
<td>296</td>
</tr>
<tr>
<td>Maximum Permissible Dose Equivalents</td>
<td>302</td>
</tr>
<tr>
<td>Personnel Monitoring</td>
<td>304</td>
</tr>
<tr>
<td>Time, Distance, and Shielding</td>
<td>306</td>
</tr>
<tr>
<td>Radioactive Materials</td>
<td>310</td>
</tr>
<tr>
<td>Radiation-Producing Machines</td>
<td>316</td>
</tr>
<tr>
<td>Signs</td>
<td>321</td>
</tr>
<tr>
<td>Appendix 1: Signs and Symbols</td>
<td>325</td>
</tr>
<tr>
<td>Appendix 2: Constants and Units</td>
<td>327</td>
</tr>
<tr>
<td>Appendix 3: Glossary</td>
<td>331</td>
</tr>
<tr>
<td>Appendix 4: Answers to Problems</td>
<td>343</td>
</tr>
<tr>
<td>Appendix 5: Dosimetry Tables</td>
<td>351</td>
</tr>
<tr>
<td>Appendix 6: Radioactive Nuclides</td>
<td>359</td>
</tr>
<tr>
<td>Appendix 7: The Elements</td>
<td>367</td>
</tr>
<tr>
<td>Periodic Table</td>
<td>372</td>
</tr>
<tr>
<td>Index</td>
<td>375</td>
</tr>
</tbody>
</table>
In this edition of *Applied Physics for Radiation Oncology*, the authors have tried to maintain the basic character of our earlier text as an introduction for radiation therapists. Most of the basic physics chapters remain unchanged, as the basic principles have not changed, and because of our belief that therapists should be taught physics principles to help them understand the technologies they apply to patients.

We have both expanded several chapters to add new techniques and removed some sections of only historic interest in others.

The collaborative team that produced this book includes those who helped produce previous versions including Rodger Holst, Joyce Keil, and Michael Nunno and a new contributor, Daniel Januseski, who updated the radiation safety chapter. We, the authors, guided the entire project and hope that our years of experience helped produce a textbook that is easy to read and helps students to learn.

Robert Stanton
Donna Stinson
September 2009
Treatment Planning

- Tumor Targeting Vocabulary
- Aims of Treatment Planning
- What Treatment Planning Includes
- Patient Alignment Devices
- Patient Positioning Aids
- Body Contours
- Isodose Distributions
- Oblique Incidence Corrections to Isodose Distributions
- Isodose Summations
- Treatment Techniques
- Stationary or Fixed Beam Treatment
- Moving Fields Treatment
- Tissue Inhomogeneities
- Tissue Compensation
- Wedge Filters
- Standard Treatment Calculation
- Beam On Time Calculations (Timer Settings)
- Monitor Unit Calculations

Student Objectives

1. List five types of target volumes and explain the importance of each.
2. Identify three aims of treatment planning.
3. Describe the process of: visualization, localization, and field selection and placement.
4. Describe field verification and documentation.
5. State the equations for timer and monitor unit calculations, and identify the type of equipment used for each.
Treatment planning is the process of determining the best method of treating a tumor with radiation. The major objective of treatment planning is to ensure that the tumor receives a uniform radiation dose while healthy tissue and critical structures are protected. Other important objectives of treatment planning are to develop reproducible setups and maintain patient comfort.

Treatment planning includes determining the volume to be treated and then designing appropriate radiation fields to treat that volume. It begins before the first radiation treatment and continues throughout a course of therapy to ensure that the intended plan is being implemented. A treatment plan may sometimes be changed during a course of therapy to compensate for changes in a patient’s condition.

Professionals from several areas work together in developing the best treatment plan for each patient. These professionals include radiation oncologists, physicists, treatment planners (dosimetrists), and radiation therapists.

TUMOR TARGETING VOCABULARY

All of the individuals involved need to use the same vocabulary when discussing and planning patient treatment. **Tumor dose** (TD, or prescribed dose, D_{Rx}) is the dose to be delivered to the disease being treated. The patient “work-up,” defines the **gross tumor volume** (GTV), the palpable or visible extent of tissue that makes up the tumor. The **clinical target volume** (CTV) is the gross tumor plus a margin to include any areas of direct but subclinical disease spread. During the process of treatment planning, the **planning target volume** (PTV) is determined. It includes the clinical target volume plus the needed margin to ensure delivery of dose to the target when motion, setup variations, etc. are taken into account. Determining the tumor and target volumes are two of the key clinical decisions of the radiation oncologist. Once the treatment plan is developed, two other volumes can be determined. **Treated volume** (TV) is the volume of tissue that actually receives the tumor dose; it may be larger but should not be smaller than the clinical target volume. The **irradiated volume** is the entire volume of tissue hit by any portion of the radiation aimed at the tumor that receives a significant absorbed dose. See figure 14.1 for illustration.

AIMS OF TREATMENT PLANNING

Treatment planning is often a challenging process during which teamwork is required to achieve optimal and reproducible radiation treatments.
There are three aims of treatment planning:

- Develop a plan that treats the tumor volume. This plan should give as homogeneous a dose distribution as possible throughout the clinical target volume.
- Minimize radiation dose to healthy structures. Areas outside the target volume should receive as little radiation as possible. Limiting dose to healthy tissues requires knowledge of how much radiation the tissues in the treatment field can tolerate. Dose levels to critical structures such as the spinal cord, kidneys, and the lens of the eyes must be minimized.
- Provide a permanent record of dose calculations and distributions so that others may, in the future, understand the treatment plan. This permanent record is not just the computer printout of a dose distribution; it includes the prescription, diagrams of the treatment field, tattoo identification, simulation and portal films, as well as other computations performed before, during, and even after each course of treatment. This record may become important if the patient needs to receive more radiation in the future.
WHAT TREATMENT PLANNING INCLUDES

Treatment planning includes visualization, localization, field selection and placement, and verification.

Visualization is the determination of the location and extent of the tumor, particularly with respect to anatomical landmarks. This process uses every reasonable method of examination, including palpation, radiography, or radiographic imaging (CT, PET-CT, MR, ultrasound, mammograms, etc.) and, when possible, direct visual examination. All the information gathered in these various examinations is correlated by the radiation oncologist, who uses it to define the volume to be treated in each patient. **Fusion** techniques may be used to combine images from more than one modality. When technology is used to overlay a diagnostic image, such as a PET-CT, with a treatment planning image, the images are described as fused.

Localization, or **simulation**, is the radiographic determination of the field borders required to encompass the clinical target volume. Ideally, localization is performed using a **simulator**—radiographic (imaging) unit that simulates all the movements of the linear accelerator or Cobalt-60 treatment unit and matches its geometry, distances (SSD, SDD, etc.), beam divergence, and field size. A simulator produces high-quality images of the treatment field.

During simulation, the patient is placed in as comfortable a position as is consistent with good beam placement. Accurate, reproducible positioning is critical since positioning during localization is almost always the position the patient must maintain throughout the course of treatment. During traditional radiographic localization, **orthogonal images** (those taken at right angles to each other) are frequently taken so that all three dimensions (x, y, and z planes) of a patient’s anatomy can be documented. Sometimes these orthogonal beams are actually used for treatment. Other times they are used solely as a step in tumor localization.

CT-simulation has largely replaced radiographic simulation. **Digitally reconstructed images (DRR)** are produced by using data acquired by the CT in the axial plane and translated to another plane (i.e., sagittal plane).

Cone beam CT (CBCT) is a technique that uses electronic portal imaging associated with modern linear accelerators. The megavoltage energy of the accelerator, along with an amorphous silicon flat panel, is used to reconstruct an axial image. These images are used to document accuracy of treatment plans at the initiation of therapy and/or as a method to monitor anatomy, including tumor size, throughout a course of therapy.

The next step is **field selection and placement**. The treatment planner selects various field sizes and beam placements to irradiate the specific tumor volumes. The dose contributions to the target as well as other organs are evaluated.
by the planner and used to choose the best combinations of beams. The chosen plan is then documented, listing the dose contributions to all important structures.

The final step in treatment planning is verification. The goal of verification is to ensure that the volumes planned for treatment are actually the areas being treated. This takes place on the actual treatment unit. Prior to the first treatment, radiographic documentation of the treatment field is necessary. Radiographic films, known as portal images, are made with electronic methods, or with film and/or cassettes designed for high-energy exposure. Film-holding cassettes often include a metal screen that produces electrons through high-energy photon interaction. These compton electrons help produce the radiographic image. Although portal films are of poorer overall image quality than other radiographic images, they contain sufficient information to determine the accuracy of beam placement.

Verification images are often repeated on a weekly basis during each patient’s treatment course to ensure continued correct field placement. New electronic portal imaging devices, similar in function to x-ray fluoroscopes, are also used for this purpose.

Documentation is critical throughout every step of treatment planning. All the data derived from visualization, localization, field selection and placement, and dosimetry calculations must be precisely recorded. Complete and accurate documentation of the details of each treatment is required so that accuracy and consistency, which directly influence the success of every patient’s course of therapy, are maintained.

Patient Alignment Devices

To achieve accurate alignment of the radiation fields on the patient several devices are used.

Field lights are the most essential beam alignment devices, because the light field on a therapy machine corresponds geometrically to the radiation field to an accuracy of ±3 mm. Tattoos and field edge marks on the patient are aligned with this light field before each treatment.

The protractor, or gantry angle indicator, is another alignment device. Just as every beam has a particular size that is defined by the field light, there is a particular gantry angle that is read on the machine protractor. This is read either mechanically or from a digital readout.

Lasers are commonly used as positioning aids but are not actually part of the treatment machine. There should be at least one laser on each side of the patient (referred to as lateral or side lasers) and one pointing down at the machine isocenter from the ceiling (referred to as an overhead laser). A sagittal laser also
projects a straight line and points toward the isocenter along the longitudinal axis of the patient or table. Lasers are used in daily patient setup, and their alignment should be checked daily as a part of the quality assurance program. Daily alignment of lasers ensures reproducible and accurate positioning.

Back pointers are mechanical devices that, when mounted on the gantry, point to the exit point of the beam’s central ray; that is, they indicate the position at which the radiation will exit the patient. Historically, back pointers were particularly useful in positioning parallel opposed tangential fields, e.g., for breast treatments, but have been replaced by laser positioning technology in the modern treatment environment.

Patient Positioning Aids

Once the location of the tumor is ensured and the patient has undergone the simulation process, it is necessary to position the patient accurately every day in the same treatment position. The use of patient positioning aids helps the patient maintain the proper treatment position without sacrificing comfort.

Many such devices are available. One of the most simple is adhesive tape used in conjunction with specially contoured head holders for head and neck treatments.

Better precision in positioning is achieved with individual **bite blocks** (custom mouthpieces). These are devices with calibrated bars and support arms attached to the patient using a custom mouthpiece, as shown in figure 14.2. When the patient is positioned, he or she bites down on the bite block, positioning his or her head and neck rigidly in the correct position.

There are several other patient positioning devices used. Specially cast patient supports made of plaster, thermal plastic materials, or cast Styrofoam materials can be used to make rigid supports for the patient. See figure 14.3. For most accurate treatment, these positioning devices should be fabricated before simulation so that the patient is in an identical position throughout the whole planning and treatment process.

Body Contours

A **body contour** is a precise outline of a patient, usually in a transverse plane that includes the region of the tumor. A contour is required both for computing and for displaying the dose distribution in the treatment volume. Frequently done at the time of localization, a contour is usually taken at the central axis plane of the fields but may be taken at other levels as well to evaluate the dose distribution.
Figure 14.2
Bite block device (custom mouthpiece). A contoured headrest is fixed in position in a calibrated and adjustable holder. Each patient has an individual mouthpiece that fits into this device. When all of the settings on the device are matched with those determined at simulation, the patient position exactly reproduces that held during simulation.

Figure 14.3
Patient in Alpha Cradle immobilization device. The patient, once placed in this custom formed device, is held in a reproducible position for daily treatments. Photograph reproduced with permission from Smithers Medical Products, Inc., North Canton, Ohio.
There are several ways of **contouring** a patient, i.e., determining the patient’s shape quantitatively. The best method to use is a CT scan, because it provides richly detailed information about external and internal anatomy. This method gives a three-dimensional rendering of the patient outline, allowing three-dimensional treatment planning with much freedom in the choice of radiation beam orientations. However, due to the small opening of most CT scanners (which usually ranges from 60 to 80 cm), CT scans are not always helpful in indicating the actual treatment position (especially in a breast setup). Large bore CT scanners help to resolve this issue.

A less commonly used and less expensive method of contouring is plaster of Paris bandage material. A strip of bandage at least four layers thick is wet completely, squeezed out, and then placed over the patient in all areas through the central axis plane of all the radiation fields to be used. While the plaster dries (which takes several minutes), the exact locations of portals and other important information such as name, date, and patient dimensions through beam centers are recorded on the contour itself and/or on an accompanying record.

Other means of contouring a patient include using ultrasound devices, lead solder wire, and special devices constructed of movable rods that take on the shape of the object against which they are pressed.

Contour types include **sagittal**, **coronal**, and **transverse** plane; figure 14.4 illustrates these planes. These three types of contours provide the three dimensions of the patient’s body.

The diameters of the patient are documented. These diameters are called **interfield distances (IFD)**, or **separations**.

Regardless of the method selected, precise contouring is a critical part of good treatment planning.

After contouring, the shape is transferred to paper and a cross section of the **planning target volume** as described earlier is drawn on the paper by either the radiation oncologist or the dosimetrist from films marked by the radiation oncologist. This method of transferring data, however, is being replaced by the direct reading of CT images into the treatment planning system. As CT becomes more widely available in radiation oncology centers, the direct reading of CT images into the treatment planning system is becoming more common.

Contour placement on paper includes carefully measured patient dimensions, marks corresponding to simulation film field centers, and comments on patient positioning. The accuracy of the patient contour is critical, because misregistering of the beam center could lead to errors in the positioning of internal organs or the beams themselves. The treatment planner must clearly understand the physician’s prescription. A 1 cm error in depth could result in a 75% error in dose using electron beams, a 15% error in dose with low-energy photon beams, and a 5% error in dose with megavoltage photon beams.
Figure 14.4
a) Transverse contour of abdomen.
b) The three planes in which contours are taken and their positions on the body.
Isodose Distributions

Isodose charts are families of isodose curves, usually drawn for equal increments of percent depth dose (%DD or PDD). The curves represent the lines of equal DD for a particular field size and SSD at a specific plane in tissue. They are different for different beams, showing the effect on dose distribution due to energy, source size, SSD, and beam attenuation.

Figure 14.5 shows a 6 MV beam isodose distribution. Two points are shown on the distribution, P and Q. The point P corresponds to a dose of 90%, and the point Q to a dose of about 75%. Note that the depths on the central ray of various DD values, e.g., 90%, 80%, etc., increase as the percent DD decreases. Also, note that as you move to the edge of the beam at a specific depth, the DD drops. In other words, the isodose curves bend toward the skin surface as you move to the edge of the beam. This drop in DD values at the edge of the beam is due to the fact that there are fewer scattered photons at the edge than at the center. In the center of the beam, scatter can come from both sides; at the edge, it can come only from one side.

Figure 14.5
Isodose curves for a 6 MV linear accelerator beam. Note the points labeled P and Q. They are located at percent depth dose levels of 90% and 75% respectively.
In figure 14.6, the distribution on the left is for a 200 kV beam, 1.5 mm Cu HVL, a 50 cm SSD, and a 5 cm × 7 cm field. The middle distribution is for a 6 cm × 6 cm field of a 60Co beam at 80 cm SSD. The distribution on the right is for a 25 MV beam with a 6 cm × 6 cm field size at 100 cm SSD. Note that the depth of a particular isodose line increases with increasing photon energy. The shape of the isodose lines at the edge of the beam is also noteworthy. The 60Co beam, which has a larger source size, has a much larger penumbra than the megavoltage x-ray beam. This is apparent when you compare the greater separation of the isodose lines at the beam edges.

Oblique Incidence Corrections to Isodose Distributions

In the previous discussion it was assumed that the radiation fields struck the patient perpendicular to the skin surface and that the patient’s tissue was homogeneous.

![Figure 14.6](image_url)

Comparison of isodose lines for various energies. The left set of curves is an orthovoltage beam. Each curve has rounded edges and the low percentiles bow outward. The middle set of curves is for a 60Co beam. Note that its isodose lines are flatter and penetrate more deeply. The right set of curves is for a high-energy photon accelerator beam. Note the deep penetration of the isodose lines and the tightly packed nature of the lines at the beam’s edge. (Reprinted from Johns & Cunningham, *The Physics of Radiology*, 4th edition, 1983. Courtesy of Charles C Thomas Publisher, Ltd., Springfield, Illinois.)
These conditions are reflected in standard isodose lines, which are measured under the ideal conditions of the radiation beam striking a flat water surface at right angles.

Of course, patients have curved surfaces and tissue **inhomogeneities** like bones and lungs. Most treatment planning systems correct for these inhomogeneities using calculation algorithms such as tissue-air ratio corrections and effective attenuation corrections.

These corrections are made by computer; however, in order to appreciate the benefits of computerized corrections, we will demonstrate a manual calculation method. In this approach, standard isodose lines are modified in order to approximate the clinical situation. This is known as the **isodose shift**, or 2/3 or 1/2 shift technique. It is a useful method for compensating for too little or too much tissue along the patient contour; see figure 14.7.

Shifting corrects the standard isodose lines by applying correction factors in the form of moving the isodose lines by a fixed portion of the tissue difference. (The standard isodose lines are obtained with the radiation beam entering perpendicular to a flat surface.) The portion chosen for the shift factors is a function of the beam energy and the machine SAD. The values of shift are shown in table 14.1.

In table 14.1, the shift factor decreases with increasing energy because of two effects: inverse square law and tissue attenuation. High-energy machines have larger SADs than low-energy machines (e.g., 60Co and orthovoltage units). The larger distances reduce the drop-off of dose with distance. In addition, the higher the energy, the less attenuation by tissue. Figure 14.7 shows the curved surface of a patient contour with a straight line corresponding to the SSD at the central axis. A thick line shows a standard isodose curve. The corrected isodose line for the actual contour is formed by moving the standard curve by the appropriate fraction of the distance between the actual contour and the straight line. The direction of the “shift” is away from the tissue deficit and toward the tissue surplus. In figure 14.7 we see the effect of skin contour on an isodose line of a single field. This means that the level of d_{max} follows the skin surface.

Table 14.1 Isodose Shift Factors for Curved Skin Surfaces

<table>
<thead>
<tr>
<th>Machine Energy</th>
<th>Isodose Shift Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 kV-1 MV</td>
<td>0.8</td>
</tr>
<tr>
<td>1-5 MV</td>
<td>0.7</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>0.75</td>
</tr>
<tr>
<td>5-15 MV</td>
<td>0.6</td>
</tr>
<tr>
<td>15-30 MV</td>
<td>0.5</td>
</tr>
<tr>
<td>30 MV</td>
<td>0.4</td>
</tr>
</tbody>
</table>
One important practical effect of non-perpendicular beam incidence is on skin sparing. In some clinical situations the beam strikes the skin surface tangentially (e.g., breast tangents). In this case, the d_max depth is reduced significantly, reducing skin sparing and producing more skin erythema and other skin reactions as well.

ISODOSE SUMMATIONS

When more than one field is used, the isodose curves of all fields must be added together to produce an **isodose summation**. Summations are usually produced using computers but can also be done (tediously) by hand. The manual summation process will be discussed using the example of two parallel opposed fields as illustrated later in figure 14.8.

The first step in summing two parallel opposed beams is to trace the isodose curves for each single field separately onto the contour. It helps to use two colors. When the lines of two isodose sets intersect, the percentages of those crossing isodose lines are added together. This result is called the **summated percentage**. This process is repeated at enough overlapping points to get a collection of summated percentages that sufficiently describe the **summated distribution**.

Figure 14.7

Example of isodose shifting of a 4 MV beam. The thick line is a standard curve. On the left, the missing tissue length A is corrected for by shifting the isodose curve down by a distance $\frac{2}{3}A$ in the same direction as the tissue deficit. On the right, the extra tissue in length B is corrected for by shifting the isodose line up toward the tissue surface by a distance of $\frac{2}{3}B$.

- **Central ray**
- **SSD**
- **Patient contour**
- **Standard isodose line**
- **A**
- **B**
- **A x $\frac{2}{3}$**
- **B x $\frac{2}{3}$**

Computers do this process as a geometrical array of points or grid in the calculation plane thousands of times faster than the manual process. See reference 1 in chapter 6 for more information on the manual process. Chapter 15 will describe the alternative ways for describing the resulting distributions.

Figure 14.8 shows the summated isodose distribution of two parallel opposing fields. Note the hourglass shape of the highest isodose line; the hourglass shape is reduced as the beam energy increases.

TREATMENT TECHNIQUES

There are many ways of using external beam therapy to treat tumors. In **stationary**, or **fixed beam**, treatment the patient is positioned on the treatment couch and then irradiated by fields directed at the treatment volume at one specific gantry angle. These fields can be set up as either **SSD** or **SAD** (**isocentric**).

Figure 14.8

Parallel opposed x-ray fields used to treat a centrally located lesion. The hourglass shape of the high-percentage isodose curve is due to the effects of penumbra and scatter of each beam.
Figure 14.9
Three-field isodose distribution. Note in this distribution of three 6 MV beams with 100 cm SAD that the 100% dose value is centrally located (at the isocenter), and the 90% line surrounds the treatment volume. With lower energy beams there are often “hot spots,” areas of high dose (90%) at the entrance region of the beams.

STATIONARY OR FIXED BEAM TREATMENT

Figure 14.8 illustrates the isodose distribution for the parallel opposed field (POF) beam configuration. Note the characteristic hourglass shape of the highest intensity isodose line, where it pinches in or narrows at the midline. This application of fields is suited to treatment of midline structures. A uniform dose (±5-10%) is given to a very large volume from d_{max} on the entrance of the AP field all the way to the d_{max} on the entrance of the PA field. While good for large lesions or central tumors including more superficial nodal areas, this distribution is not optimum
when midline structures are treated behind sensitive structures like the spinal cord.

The addition of other beams can reduce the relative dose to superficial tissues while maintaining a high central dose. Whenever another beam is added, the isodose lines are pulled in the direction of that new beam. Figure 14.9 shows the effect of a **three-field** plan on the isodose distribution.

One very common treatment plan for bladder, rectum, and prostate cancer uses two sets of parallel opposed fields, four fields at right angles aimed at the same center. The resulting isodose distribution is box-like; this treatment approach is therefore called a **four-field box** technique. Such an approach is shown in figure 14.10 for a 18 MV machine at 100 cm SAD. The summation of the four fields’ dose lines produces a uniform distribution in the center and results in lower entrance doses with the box technique than with parallel opposing fields. In effect, the more fields used, the higher the central dose relative to the entrance doses.

Figure 14.10

Four-field box technique using four 18 MV photon fields. The box shape of the high-dose region gives the technique its name. Note the high level of dose concentration in the center, leaving the peripheral tissues in low-dose regions.
A variation of this technique is sometimes used. The four-field diamond is shown in figure 14.11. This configuration of beams lowers the dose at the sides of the patient. In pelvis treatments, for example, this means that the femoral head and rectal doses are less. The choice of beam combinations is dependent on the shape of the target volume, the type of tissues adjacent to that volume, the patient's size, and the beam energies available.

MOVING FIELDS TREATMENT

The ultimate approach to adding fields that limit superficial doses is moving the beam during treatment. Such fields are called moving, or dynamic, fields. In this type of treatment, the patient lies at rest on the linear accelerator couch, and
the machine irradiates the patient while the gantry rotates around the patient. **Rotational therapy** is when the beam makes a complete 360° rotation around the patient. If the beam makes less than a full rotation, it is called **arc therapy**. The word **rotation** is often used for any moving field technique, either full rotation or arc therapy. Double or multiple arc therapy is when two or more arcs are used. **Skip arc** therapy is when the beam is turned off for specific segments of the rotation. In most rotational therapy, the center of the tumor is placed at the isocenter of the machine. Therefore, the SSD varies continuously as the machine rotates.

Figure 14.12 illustrates the isodose distribution for a 360° rotation of a 7 cm \(\times \) 9 cm field size at 80 cm SAD with a 4 MV beam. Note that the isodose lines are circular in shape at the high percentiles, while the lower percentiles are more oval in shape with the long axis of the oval at right angles to the width of the patient. If the patient were shaped like a circle, all of the isodose lines would be circles. Also note that, with the full rotation technique, the isodose lines are centered on the machine isocenter.
When partial rotations are used, the maximum dose always occurs towards the machine head. That is, if the radiation beam arcs over the anterior part of the patient, the dose will lie mostly in the anterior portion of the patient. Figure 14.13 demonstrates the isodose distribution for a 180° anterior arc. It shows that in a partial rotation treatment, the isocenter should be placed a few centimeters posterior to the tumor center. This is called past pointing. In this technique, the isocenter of the machine is placed behind the target volume and the beam is aimed from in front of the lesion. By placing the isocenter of rotation past the tumor center, the dose distribution is effectively pulled in a manner that covers the tumor volume as shown in figure 14.13.

Figure 14.13
Partial rotation, past pointing. In this example, the machine arcs above the patient; therefore, the high-dose region lies above, i.e., in front of the machine isocenter.

Tissue Inhomogeneities

Tissue inhomogeneities are volumes within the patient that have non-uniform tissue densities. For example, while the density of most soft tissue is about 1, that
of lung is much lower, bone somewhat above 1, and metal plates used in bone repair much greater than 1. Tissue inhomogeneities alter the dose distribution from the standard curves due to attenuation and scatter. Calculations to account for these inhomogeneities, heterogeneity corrections, inside the patient are handled in a similar fashion to oblique incidence (discussed earlier). Instead of shifting 1/2 or 2/3 in the direction of tissue deficit, the curves shift away from the patient surface (deeper) with low-density inhomogeneities (e.g., air cavities) or toward the patient surface with high-density inhomogeneities (e.g., bones). Table 14.2 illustrates factors used for various tissue corrections.

Other approaches to tissue inhomogeneities are also possible. One method for correcting tissue inhomogeneities is the effective TAR method. It is a point-by-point calculation technique instead of a line-by-line technique and is therefore appropriate only for computerized point calculations. For each point in the patient (actually each point of interest) the equivalent water path length or depth is calculated using electron densities of overlying tissues. Imagine that the patient contour is filled with a matrix of calculation points and that the computer calculates doses at each of the matrix points. See figure 14.14.

Figure 14.15 illustrates the effective TAR computation process using only three points. The three points on the right of the phantom (P₁, P₂, and P₃) are traversed by the x-ray beam from the left. To reach the three points, however, the radiation beam has to travel through three different materials—air, water, and bone.

In order to calculate the appropriate TAR for each material, the water equivalent path length must be determined. This is the thickness of water that will provide the identical attenuation of the actual beam path.

The calculation for P₁ is as follows:

\[
\text{Path length } P₁ = 5 \text{ cm water} + 6 \text{ cm air} + 5 \text{ cm water} \\
= 10 \text{ cm water} + 6 \text{ cm air} \\
= 10 \text{ cm water}
\]
Because of its low density, 6 cm of air is equivalent to less than 1 mm of water and is ignored. Therefore, the equivalent length is just 10 cm.

The calculation for \(P_2 \) is handled similarly:

\[
\text{Path length } P_2 = 5 \text{ cm water} + 6 \text{ cm water} + 5 \text{ cm water} = 16 \text{ cm water}
\]
and for P₃,

\[
\text{Path length } P₃ = 5 \text{ cm water} + 6 \text{ cm bone} + 5 \text{ cm water} \\
= 10 \text{ cm water} + 6 \text{ cm bone} \left(\frac{\text{bone density}}{\text{water density}} \right) \\
= 10 \text{ cm water} + 6 \text{ cm bone} \left(\frac{1.5 \text{ g/cm}^3}{1.0 \text{ g/cm}^3} \right) \\
= 19 \text{ cm water}.
\]

Thus the dose at P₁ > dose at P₂ > dose at P₃. In this equation, bone density (1.5 g/cm³, i.e., 1.5 times the density of water) is used to convert the bone thickness to water thickness. Once the path length for a point is calculated, it is used as the depth to determine the TAR (by looking it up in the TAR tables) for the point in question.

Both equivalent path length and isodose shift are only approximation methods. They do not account for scatter from different nearby structures, but give answers good to within a few percent. They have been presented here to demonstrate some of the considerations of isodose construction.

Tissue Compensation

Another way of correcting doses in cases of tissue deficit is to make the surface flat using tissue equivalent material called bolus (see figure 14.16). Materials used for bolus include rice, sugar pellets, flour, sodium bicarbonate, and other various mixtures.

Bolus may also be used to bring d_max to the patient’s skin surface. In these cases, materials such as wet gauze, Vaseline gauze, or other malleable tissue equivalent materials are used in a thickness equal or close to that required for the production of electron equilibrium.

When bolus is used, SSD in both patient setup and treatment planning must be consistent. If the dosimetrist calculates using 100 cm SSD to the bolus (101.5 cm SSD to the surface with 1.5 cm d_max for a 6 MV photon beam) and if the therapist uses 100 cm SSD to the skin (98.5 SSD to the bolus), an error as large as 3% can be introduced into the patient treatment.

The placement of bolus on the skin surface reduces skin sparing in megavoltage photon beams as described in chapter 8. Custom-shaped compensating filters (see figure 14.17) are sometimes used to avoid this bolus effect. The distance between the compensator and the skin surface is large enough (at least
Figure 14.16
Tissue deficit compensation. In this example, the hatched area at depth is to be treated. The air gap shown on the left (a) causes an uneven dose distribution over the tumor and can be compensated for by using either of two approaches. The first is bolus (b), where the compensation material is in contact with the patient. One unfortunate consequence of bolus is the loss of skin sparing. Effectively moving the bolus from the patient surface toward the machine source (blocking tray position) retains the compensation of the bolus while re-establishing skin sparing (c and d). (Reprinted from Johns & Cunningham, *The Physics of Radiology*, 4th edition, 1983. Courtesy of Charles C Thomas Publisher, Ltd., Springfield, Illinois.)

Figure 14.17
Geometry of tissue compensating filters. The compensators are placed in a holder near the photon source and mimic the shape of the patient’s inhomogeneities. Because of beam divergence, the compensator is smaller than the bolus it replaces.
In the 1950s through the 1970s, the term universal wedge was used in a different context, referring to a wedge of a specific angle designed for use for all field sizes (with its center always on the beam axis) instead of for a specific field size. In these individualized wedges, the toe was always aligned with the beam edge. This usage of the word “universal” is no longer common.

Wedge Filters

A common, non-customized compensating device is the wedge filter, or wedge, shown in figure 14.18. A wedge is used to distort the isodose distribution by tilting isodose lines through a specific angle (figure 14.19). Wedges are sometimes used to compensate for sloping body surfaces. They are also used to good effect for areas of great obliquity such as neck, breast tangents, and other anatomic areas where hot spots (regions of maximum dose occurrence) could occur (shown later in figure 14.21). The thick end of the wedge is called the heel (which transmits less of the initial beam) and the thin end the toe (which transmits more of the initial beam).

The angle to which a specific isodose line is bent is also the name of the wedge and is called the wedge angle. Lower energy machines use a 50% or 60% isodose line, while higher energy machines use 70% or 80%. Wedges are available for all megavoltage treatment machines at specific angles, usually 15°, 30°, 45°, and 60°.

A slightly different approach is used by some manufacturers who use one single wedge permanently mounted in a motorized moving tray within the machine head. By varying the proportion of the mu setting that the wedge is in the beam, you can vary the effective wedge angle. Some manufacturers call this a universal wedge.¹ This approach can also be used with conventional wedge sets in order to create effective wedge angles of any angle by mixing open and wedged beams.

¹ In the 1950s through the 1970s, the term universal wedge was used in a different context, referring to a wedge of a specific angle designed for use for all field sizes (with its center always on the beam axis) instead of for a specific field size. In these individualized wedges, the toe was always aligned with the beam edge. This usage of the word “universal” is no longer common.
Figure 14.18
Wedge vocabulary. Wedges are usually made of high-Z materials to minimize space needed in the machine head or above the blocking tray holder.

Figure 14.19
An isodose chart for a 10 cm × 10 cm field size, 6 MV x-ray beam, used with a 45° wedge.
Another approach is used by most new linear accelerators. In these units, the independently variable jaws are moved during the therapy treatment, producing the effective dose distribution of a standard wedge but without the use of any wedge filter. This approach is sometimes called dynamic or virtual wedge.²

2. Before moving jaw dynamic wedges became common, the internal wedges described above were sometimes called dynamic wedges.

Figure 14.20
The hinge angle is the angle between the central rays of the two beams.

Figure 14.21
A pair of unwedged fields at 90° angles. Note the hot spot (H) where the beams overlap in the area of tissue deficit.
Wedged fields are often used in pairs, called **wedge pairs**. The angle between the two fields is dictated by patient anatomy and is called the **hinge angle** (figure 14.20). Then the following simple formula is used to predict the appropriate wedge angle to use for the optimal dose distribution:

\[
\text{Wedge angle} = 90^\circ - (0.5 \cdot \text{hinge angle})
\]

or:

\[
\text{Hinge angle} = 180^\circ - (2 \cdot \text{wedge angle})
\]

Thus, 45° wedged fields usually have a 90° hinge angle. Similarly, 60° wedged fields usually have a 60° hinge angle.

Figures 14.21 and 14.22 demonstrate the use of wedges on a maxillary sinus tumor. The first figure shows two beams aimed at a structure at right angles without wedges. With the insertion of 45° wedges with their heels toward each other, the dose uniformity over the tumor is markedly improved.

Wedges are used frequently in tangential breast, three-field pelvic, and numerous other field irradiation arrangements. Some of these will be discussed in greater detail in chapter 15.

Figure 14.22

Wedged pair distribution. Note that the hot region shown in figure 14.21 is eliminated by attenuation of the beam by the thick end (heel) of the wedge.
STANDARD TREATMENT CALCULATION

The final step in any treatment plan is the calculation of treatment time or monitor unit setting for the energy being used. The basic physics of this process is discussed in chapter 12 along with specific equations. This section demonstrates some of these techniques.

BEAM ON TIME CALCULATIONS (TIMER SETTINGS)

Machines such as 60Co units, orthovoltage, and superficial x-ray machines are controlled using a timer setting. The technique for time calculation will be demonstrated in two steps. First, the general approach to the problem will be outlined. Second, a numerical orthovoltage example will be presented.

Surface lesions are often treated using fixed cones that are larger than the tumor to encompass both the lesion and an adequate margin. In these cases, lead masks or cutouts are used to shield all but the desired area. The thickness of lead necessary is usually 1/8" (3.2 mm) or less. For example, the skin of a patient is treated to the area shown in figure 14.23. The rectangular area has an equivalent square field size of $2 \text{ cm} \times 3 \text{ cm}$ or 2.4 cm^2 as determined from the equivalent squares in table 12.1.

Figure 14.23

Lead cutout in a 5 cm \times 5 cm field. The hatched area is covered by lead, leaving an open area with an effective field size of $2 \text{ cm} \times 3 \text{ cm}$.
There are three steps involved in calculating the timer setting for a treatment. The first step is the determination of dose rate. Its value is determined from the results of the machine calibration combined with other data on the beam as follows:

\[
\text{Dose rate} = \text{Machine output} \times f_{\text{med}} \times \text{BSF}
\]

Here, machine output is obtained at the time of annual calibrations, usually determined for the unblocked cone when using superficial and orthovoltage beams, and/or the open field when using \(^{60}\)Co beams. The \(f_{\text{med}}\) value (R to cGy conversion factor) is determined from tables, such as table 7.3, and the value of BSF is obtained from table 14.3 for the specific quality of the beam, which is measured at the time of machine calibration, or appendix 5 for \(^{60}\)Co. Second, once the dose rate is determined, the beam on time can be obtained using the simple equation:

\[
\text{Beam on time (min)} = \frac{\text{Dose per fraction}}{\text{Dose rate}}
\]

where the numerator indicates the dose per fraction in cGy and the denominator indicates the rate, which is the actual number of cGy per minute (or for orthovoltage units, R/min) at the skin.

Third, we measure the timer error (discussed in chapter 10), which is determined at the time of machine calibration. While timer errors for superficial beams are usually negligible, orthovoltage beams and \(^{60}\)Co machines may have significant timer errors. Beam on time is determined using the simple equation:

\[
\text{Timer setting} = \text{Beam on time (min)} + \text{Timer error}
\]
As a numerical example, we are given the following calibration information:

Output of 5 cm square cone: 90.3 R/min
kVp: 220
Filter: 0.75 mm Cu
HVL: 1 mm Cu
Timer Error: + 1.5 seconds
Prescription: 300 cGy per fraction

Now we are asked to determine the timer setting to deliver 300 cGy to the patient's skin. From table 12.1, the effective field size is 2.4 cm. That means the dose rate at the skin is as follows:

\[
\text{Dose Rate} = \text{Machine output (open cone)} \cdot f_{\text{med}} \cdot \text{BSF (blocked field)}
\]

\[
= 90.3 \text{ R/min} \cdot 0.95 \text{ cGy/R} \cdot 1.11
\]

\[
= 95.2 \text{ cGy/min.}
\]

Note that the BSF is determined for the open area of 2 cm \(\times\) 3 cm (2.4 cm equivalent square field size). The value 1.11 is interpolated from table 14.3). The beam on time necessary for the treatment is:

\[
\text{Beam on time (min)} = \frac{\text{Dose per fraction}}{\text{Dose rate}}
\]

\[
= \frac{300 \text{ cGy}}{952 \text{ cGy/min}}
\]

\[
= 3.15 \text{ min.}
\]

Finally, to determine timer setting, we first convert the decimal minutes to seconds before adding in the timer error as follows.

\[
\text{Timer Setting} = \text{Beam on time} + \text{Timer error}
\]

\[
= 3' 9" + 1.5"
\]

\[
= 3' 11"
\]

This example demonstrates the technique for use in a roughly rectangular field. If the field is more circular, the equivalent field size can be determined using techniques outlined in BJR Supplement 25 (reference 3). This same technique is also used for superficial x-ray machine treatments and is similar to that for \(^{60}\text{Co}\) machines.
Monitor Unit Calculations

In linear accelerators, dose delivery is controlled by selecting the number of monitor units (mus). Therefore, there is no timer error and the formulas for dose calculations are different than those for machines that use timer setting. Two examples will illustrate the approach.

Example 1: A patient is treated to the sacrum through a single PA field to deliver 300 cGy at a depth of 6 cm using a 4 MV linac. SSD = 80 cm and the field size is 10 cm \times 15 cm using a small corner block on a plastic tray. As described in chapter 12, the equation is:

\[
N_{mu} = \frac{\text{Tumor dose}}{C_{cal} \cdot C_{fs} \cdot C_{sem} \cdot DD}.
\]

The appropriate values for these factors are determined as previously outlined. The 10 cm \times 15 cm field size has an equivalent square of 11.9 cm\(^2\). The field size factor is determined from figure 12.4 and is 1.02. The attenuation of the tray is 0.96. The depth dose is 0.783, which is determined from appendix 5, table 2. The resulting mu setting is therefore:

\[
N_{mu} = \frac{300 \text{ cGy}}{10 \text{ cGy/mu} \cdot 1.02 \cdot 0.96 \cdot 0.783} \approx 391.
\]

Example 2: A more complicated treatment is a pair of parallel opposed 6 MV fields to treat a patient’s pelvis. The field size is 20 cm \times 12 cm, the patient thickness is 20 cm, and the patient is treated isocentrically at a SAD of 100 cm (SSD of 90 cm) to a dose of 200 cGy midplane, two fields per day. In this case, the treatment dose per field is 100 cGy, the depth of treatment is 10 cm (one-half of the patient thickness), and the machine SAD is 100 cm. The equation we use is:

\[
N_{mu} = \frac{\text{Dose}}{C_{cal} \cdot C_{fs} \cdot C_{sem} \cdot \text{TMR} \cdot \left(\frac{\text{SSD} + d_{\text{mu}}}{\text{SAD}_{cal}} \right)^2}.
\]
The field size yields an effective square field of 14.8 cm² for a field size factor of $C_6 = 1.030$ from appendix 5, table 8. The patient is treated by the SAD technique; therefore, the appropriate attenuation factor for tissue is the TMR. From appendix 5, table 7, the TMR value is 0.816. We know the calibration is performed at 100 cm SSD and, therefore, the SAD to the point of calibration is 101.5 cm. Substituting the values in the above equation, we obtain:

$$N_{\text{mu}} = \frac{100}{1.0 \cdot 1.030 \cdot 0.816 \cdot \left(\frac{100}{101.5}\right)^2}$$

$$= 1190 \cdot 0.971$$

$$= 115.5.$$

Therefore, the mu setting is 116.

If a blocking tray is used in the beam, the tray transmission factor would be used in the denominator as C_{tray}. If a manual calculation is performed for a wedged field, the C_{tray} factor would be the wedge transmission factor. The calculation equation then becomes:

$$N_{\text{mu}} = \frac{\text{Tumor dose}}{C_{\text{cal}} \cdot C_{\text{is}} \cdot C_{\text{tray}} \cdot C_{\text{wedge}} \cdot DD}.$$

Calculations for 60Co beams are similar in principle to those described above except that the output is in cGy per minute and the answer is in units of time (i.e., minutes and seconds). Tables in appendix 5 provide sample beam data for several different beam energies.

Problems

Using the data tables in chapters 7 and 12 and appendix 5, perform the following calculations:

1. Determine the timer setting necessary for the following treatment:
 - Skin Dose = 250 cGy
 - Energy: Orthovoltage: $f_{\text{muscle}} = 0.91$
 - Machine Calibration: 82.1 R/min at the cone tip, SSD = 50 cm
 - Field Size: 2 cm \times 8 cm: BSF = 1.25
 - Tissue Treated: muscle equivalent
 - Timer Error: 2 seconds (to be added)
2. Determine the mu setting necessary to deliver 100 cGy to a depth of 15 cm in the following field:
 Energy: 4 MV
 SSD: 80 cm
 Field Size: 12 cm \times 15 cm

3. If 100 cGy is delivered in problem 2, what is the given dose?

4. If the depth in problem 2 is changed to 10 cm, what is the mu setting?

5. What is the timer setting for delivery of 300 cGy to a depth of 6 cm in a 60Co beam with an SSD of 80 cm if the field size is 10 cm \times 10 cm, the timer error is 0.01 min (to be added), and the machine output calibration is 82.1 R/min at 80 SAD?

6. What is the answer to problem 5 if the field size is not 10 cm \times 10 cm but is instead blocked down from that to 5 cm \times 5 cm (as in the following figure) and if the calculation is performed to deliver the dose at point P? (This concept was covered in chapter 12.)

7. In appendix 6, table 3, locate the d\textsubscript{max} for a 6 MV beam.

8. What is the answer for problem 2 if a tray with a transmission factor of 0.98 is used to support a tiny block in the field? Assume that the small block has no affect on the depth dose.

9. What is the mu setting to deliver 150 cGy to a depth of 15 cm with a 6 MV 15 cm \times 20 cm beam if the tumor is at the machine isocenter (100 cm SAD) and if the machine was calibrated at 100 SSD?

10. What is the output factor (cGy/mu) for a 10 cm \times 10 cm field setting at 200 cm SSD if at 100 cm SSD the output factor is 1.000 cGy/mu for the 20 MV photon beam?
BIBLIOGRAPHY

Index

Note: Page numbers followed by f refer to figures; page numbers followed by t refer to tables.

absorbed dose, 83–84
to air, 83–84
dose equivalent and, 89, 295
f-factor of medium and, 84–86, 86t
for x-rays above 3 MeV, 86–88
See also dose
absorption coefficient, 57, 57f, 84, 85t
absorption edge, 50
absorption of photons, 35, 47
abutting fields, 147–149, 148f
beam splitters used with, 150
of electrons, 208–209
intensity-modulated radiation therapy
and, 173
accelerated fractionation, 178
acceleration, 2, 3
accelerators. See linear accelerators
Accredited Dosimetry Calibration Laboratory, 80, 209
achromatic magnets, 114
active length, of sealed source, 279, 280f, 313
activity, of radioactive source, 286–287, 313, 360–362, 361f
adaptive therapy, 269
afterloading, 283–284, 288
agreement states, 294
air kerma, 79, 80, 81–82
air kerma strength, 287
ALARA, 302, 304
alloys, 167–171, 169f. See also Cerrobend
alpha decay, 362–363, 363f
alpha particles, 11
health effects of, 363
as ionizing radiation, 11, 12, 12f
in magnetic fields, 12, 13f
in proportional counter, 63, 63f
range in air, 363
American Association of Physicists in Medicine (AAPM), 87, 209
annealing, of thermoluminescent dosimeters, 72
apparent activity, of brachytherapy source, 287
applicators, 281, 282f, 283f
arc therapy, 234, 235f
area, 2
asymmetric beam, 117f, 118
asymmetric collimation, 150, 151f
asymmetric jaws, 118, 171
Atomic Energy Commission (AEC), 294
atomic mass number (A), 10, 359
atomic nomenclature, 359–360
atomic number (Z), 10, 359
Compton effect and, 52, 53t
of Geiger-Mueller chamber wall, 64
of ionization chamber wall, 62
pair production and, 53
photoelectric effect and, 48, 50
of target, 29, 31
atomic structure, 8–10, 8f, 9f
attenuation coefficients, 45–47, 46f
absorption coefficient and, 57, 57f
linear, 36–37, 39–40, 41–42, 41t, 42t
attenuation coefficients (cont.)
 mass, 41–42, 42f, 43f, 46–47, 46f, 53, 54f, 55
attenuation factors
 equipment, 183–184, 184t, 187, 188, 190, 248
 patient, 184–185. See also specific factors
attenuation of photon beam, 33, 34–41, 35f
 defined, 34–35
 interactions leading to, 47, 54f, 55, 56, 56f
 transmission curves and, 36f, 37, 37f, 38f, 39
 See also attenuation coefficients; filters;
 half-value layer (HVL); shielding attenuators, 35, 35f. See also filters
Au-198 (gold-198), 310–311, 311t
Auger electrons, 365
automatic setup, 124
back pointers, 222
background radiation, 303
backscatter, 178
 depth of maximum dose and, 178, 179f, 180, 194
backscatter factor (BSF), 178–180, 180f
 beam on time and, 245
 table of, 245t
 tissue-air ratio and, 189, 190, 195
balancing, of electron isodose curves, 208, 209
barrier design, 316–320, 318f, 319f
beaded trays, 146–147, 146f
beam. See electron beams; field; x-ray beams
beam arrangements. See four-field box;
 four-field diamond; parallel opposed fields (POF); tangent fields
beam flatteners. See flattening filters
beam hardening, 27, 39
beam on time calculations, 243–246
beam profiles
 of electron beam, 208, 208f
 of photon beam, 197–199, 198f
 See also flatness; flattening filters;
 penumbra; symmetry
beam size. See field size
beam splitters, 150
beam weighting, 260, 261f
beam’s-eye-view displays, 267, 267f, 268
BEIR (Committee on the Biological Effects of Ionizing Radiation), 298–299, 302
bending magnet, 112, 113f, 114
beta decay, 363–364, 365f
 of cobalt-60, 128–129
beta-minus particles, 11, 363–364
 brachytherapy with, 289
 proportional counter used for, 63, 63f
 See also electron(s)
 See also positrons
binding energy, 10
bite blocks, 222, 223f
block(s)
 Compton scattering and, 50, 52
 custom, 167–171, 168f, 169f, 170t, 267
 half-value layers of, 41, 170t
 scattered radiation from, 176
block cutter, 168, 169f
block tray, 166f, 168, 170
 attenuation factors for, 183, 184, 184t, 187, 248
blocking, 165–171
 beam divergence and, 166f, 167, 167f, 171
 in conformal therapy, 268–269
 dose calculations with, 190–194, 191f, 192f
 of electron field, 210, 211, 211t, 212f, 213
 multileaf collimation compared to, 171, 171f
 proportional relationships in, 165, 166f
body contours, 222, 224, 225f
Bohr model, 8–9, 8f
bolus, 238, 239f
bone
 f-factor for, 85–86, 86t
 mass attenuation coefficient of, 46, 46f
 photoelectric effect in, 50
bone metastases, 312
boost fields, 252, 265
brachytherapy, 277–291
 afterloading in, 283–284, 288
 applicators for, 281, 282f, 283f, 289
 basic concept of, 278
 dosimetry of, 281, 286–288
 plaques for, 289
 radiation safety in, 283, 288, 289, 310–315
 radioactive sources for, 279, 280f, 281, 289
 radionuclides used in, 278–279, 279t, 310–312, 311t
Bragg peak, 137–138, 137f
Bragg-Gray cavity theory, 86–88, 87f
brain lesions
 mixed field for, 256, 257f
 stereotactic radiosurgery for, 265, 266f
 temporary implants for, 289
 vertex field for, 253, 253f, 254f, 265
breast tangents. See tangent fields
bremsstrahlung, 20, 24–26, 25f
 attenuation of, 37, 39
 bremsstrahlung tail, 206–207, 206f
 build-up cap, 62, 189, 194
byproduct material, 66, 294
C values, 87, 88t
 calcium fluoride detectors, 71, 72f
calibrated dosimeter, 80
calibration
 of cobalt-60 beams, 245
 of conventional x-ray machines, 80–82, 81f, 82t, 245
 of electron beams, 209
 ionization chambers for, 64
 of survey meters, 66–67
 of thermoluminescent dosimeters, 73
calibration factor
 from accredited laboratory, 80
 in electron dosimetry, 210
 in photon dosimetry, 181–182, 187–188, 190
cap of ionization chamber, 61f, 62
 build-up cap, 62, 189, 194
cathode ray tube, 19, 20f
cavity theory, 86–88, 87f
central ray, 150, 176, 177f, 198f
Cerrobend
 for blocking electron beams, 210, 211, 211t, 212f
 for blocking photon beams, 170–171, 170t
 compensating filters made of, 240
 properties of, 170
cesium–137, 67, 310, 311t, 313–314
chamber, 60, 60f. See also ionization chambers
 characteristic radiation, 20, 22–24, 23f, 48, 49f
 characteristic x-rays, 23, 25, 25f, 48
 in Thoraæus filter, 27–28
charged particles
 force between, 3–4, 5f, 9
 in magnetic field, 12, 13f
 masses and rest energies, 13t
 See also particulate radiation
check sources, 66–67
chromatic magnets, 114
Clarkson method, 191, 191f, 193
clinical target volume (CTV), 218, 219, 219f, 220
cobalt-60
 in brachytherapy, 310
 characteristics of, 311t
 in radiosurgery, 128
cobalt-60 machines, 128–136
 advantages and disadvantages of, 128
 collimator scatter with, 176
 depth dose with, 187t, 188, 351t
 emergency procedures for, 134, 135t
 head of, 130, 131f
 isodose curves with, 227, 227f
 penumbra with, 132–134, 133t, 134f
 quality assurance of, 134–136
 radiation safety with, 130, 133–134, 135–136, 316–321
 radiation sources in, 128–130, 129f
 source exposure mechanisms, 130
 time calculations for, 244, 245, 246, 248
 timer error with, 130–132, 132f, 245
 tissue-air ratio with, 190, 191–194, 192f, 356t
cobalt-60 machines (cont.)
 written directive for treatment with, 135–136
coherent scatter, 47–48, 47f, 54f, 56f, 57
cold spot, with abutting fields, 149
collection efficiency, of gas ionization
detector, 61, 63
collimation
 of cobalt-60 beams, 133, 134f
 of electron beams, 120, 121f, 122
 isocentricity and, 163
 of neutron beams, 138–139
 of photon beams, 118
 of proton beams, 138
scattered radiation resulting from, 176
 See also jaws; multileaf collimators
 (MLCs)
collision interactions, of electrons with
 matter, 20–22, 21f, 22f
colposstats, 281, 282f
Committee on the Biological Effects of
 Ionizing Radiation (BEIR),
 298–299, 302
compensating filters, 238, 239f, 240. See
 also wedges
Compton scattering, 50–52, 51f
 attenuation coefficient and, 54f
 backscatter factor and, 179
 in film badge, 305
 in ionization chambers, 62
 as proportion of interactions, 56, 56f
 skin sparing and, 100
computed tomography. See CT scans
counters in radiation oncology, 201, 270
 for control of linear accelerators, 124
 for milling of customized
 compensators, 240
concrete barriers, 52, 316, 318–319, 319f
 condensed air, 62
 conduction band, 70, 71f
 cone beam CT (CBCT), 220, 272
 cones, 120, 214
 conformal methods, 268–269, 268f, 270, 270f, 272
 conservation of energy, 4
constructive interference, 107
counter cones, 120, 214
continuous spectrum, 23f, 24
contouring a patient, 222, 224, 225f
controlled area, 317, 319
conventional x-ray machines. See
diagnostic imaging; orthovoltage
 x-ray beams; orthovoltage x-ray
 machines; superficial x-rays
conversion factors, 327–328
dependent system, 150–151, 152f, 153f, 154f
coplanar beams, 155, 265
coronial plane, 224, 225f
corpuscular emissions, 78, 79
cosmic rays, 12–13
couch. See table
 Coulomb force, 3–4, 5f, 9
counts per minute (cpm), 67
critical structures, 219
CT scans, 220, 224, 267, 268, 272
cutie pie, 64, 65, 65f, 66t, 68
CyberKnife, 109, 273f, 274
cyclotrons, 136–137, 136f, 138
dmax. See depth of maximum dose (dmax)
daughter products, 360
dead time, of Geiger–Mueller counter, 64
decay products. See radioactive decay
depth dose equivalent, 303, 305
dees, 136, 136f
de-excitation of atoms, 68
density
 of common materials, 358t
 Compton effect and, 52
 defined, 2
 mass attenuation coefficient and, 42, 42t
See also electron density
depth dose (DD), 184–188
 with cobalt-60 machines, 187t, 188, 351t
 defined, 185–186, 186f
with electron beams, 205–207, 205f, 206f
INDEX

measurement of, 185, 185f
dozen neutrons vs. photons, 138, 139f
vs. photon beam energy, 94–95, 95f, 96f, 98, 100t, 187t
source to skin distance (SSD) and, 186–187, 186f, 187t, 188, 190
tables of data, 100t, 187t, 351t–355t

tissue-air ratio and, 189–190
tumor dose and, 187–188
depth of maximum dose \((d_{\text{max}}) \), 99f, 100–101, 101t, 176, 177f
backscatter and, 178, 179f, 180, 194
bolus and, 238
depth dose and, 185–186, 186f
for electron beams, 206
field size correction and, 180–182
oblique incidence and, 229
tissue-maximum ratio and, 194, 195f
See also maximum dose \((D_{\text{max}}) \)”
destructive interference, 107
diagnostic imaging
calibration of x-ray machines for, 80–82, 81f
Compton scatter in, 52
filtration in, 26
photoelectric effect in, 50
x-ray tubes for, 29, 30f, 31
diamond technique, 233, 233f
diffraction, 15
digitally reconstructed radiographs (DRR), 220
diode detectors, 73–74, 74f
distance terms, 176, 177f
distribution factor, 295
divergence of x-ray beam, 33, 34, 34f
asymmetric collimation and, 150
beam splitters and, 150
blocking and, 166f, 167, 167f
depth dose and, 186, 187
independent collimators and, 150
multileaf collimation and, 171
non-midplane anatomy and, 149
See also inverse square law
diverging blocks, 167–168, 168f, 169f
dose
in air, 83–84, 178
backscatter and. See backscatter factor (BSF)
for blocked fields, 190–194, 191f, 192f
distance relationships and, 165
distance terms and, 176–177, 177f
field size and. See field size correction factor
in a medium, 84–86
See also absorbed dose; attenuation factors; equivalent dose (H); maximum dose \((D_{\text{max}}) \); tumor dose (TD)
dose build-up, 99, 99f
dose distributions. See isodose distributions
dose equivalent. See equivalent dose (H)
dose fractionation, 177–178, 278
dose profiles. See beam profiles
dose response relationships, 297–298, 297f
dose to maximum zone of intensity (MZI), 176
dose-volume histograms (DVHs), 269, 269f, 270f
dosimeter correction factor, 209
dosimetrist, 218, 224
double plane implant, 284, 285f
drift tubes, 104, 105f
dummy brachytherapy sources, 283, 284
dynamic fields, 233–234, 234f, 235f
dynamic therapy, 201
dynamic wedge, 242, 258
ears. See horns (ears)
edges of beam, 143, 198f, 199
effective dose, 296
effective dose equivalent, 296
effective energy, of cobalt-60, 128
effective TAR method, 236–238, 237f
effective wedge angles, 240, 242, 258
efficiency, of ion chamber, 61, 63
electric fields, of electromagnetic waves, 15, 16f
electromagnetic energy, 15, 17
emissary radiation, 14–17, 16f
interference of, 107
spectrum of, 14–15, 14f
See also gamma rays; x-rays
electrometers, 79
electron(s)
atomic structure and, 8–10, 8f, 9f
electrostatic force on, 3–4, 5f, 9
interaction with matter.
 See bremsstrahlung; characteristic
radiation
as ionizing radiation, 11, 12, 12f
in magnetic fields, 12, 13f
secondary, 12, 79, 99, 99f
electron beams, 203–215
broadening of raw beam, 118–120, 119f
calibration of, 209
collimation of, 120, 121f, 122
depth dose with, 205–207, 205f, 206f
energy of electrons in, 203–205, 204f
energy to treat specific depth, 210, 210f
inverse square law with, 211, 214
isodose curves for, 196, 197f, 208, 208f, 213, 213f
mean beam energy at surface, 207
mixed with photon beams, 253, 256, 257f
monitor units with, 209–211
range of, 204–205, 207, 207f
raw, 114f, 115
tissue inhomogeneities and, 213–214, 213f
electron capture, 365, 366f
electron cones, 120, 121f, 214
electron contamination, 176
 from penumbra trimmers, 133
electron density
 Compton effect and, 52
 of various materials, 53t
electron equilibrium, 62, 100–101, 178, 179f
electron gun, 106
electron volts (eV), 4, 11, 11t

electronic portal imaging, 220, 221
electrostatic force, 3–4, 5f, 9
electrostatic potential energy, 4
electrostatic unit of charge (esu), 78
elements
 characteristics of, 367–370
 periodic chart of, 372–373
energy, 3–4, 5f
 absorbed dose and, 83–84
 kerma and, 79–80
 of a photon, 17
 units of, 3–4, 11, 11t
energy spectrum. See spectrum
equal beam weighting, 260
equipment attenuation factors, 183–184, 184t, 187, 188, 190, 248
equivalent dose (H), 88–89, 295–296
effective, 296
 maximum permissible, 302–303, 303t, 304
equivalent energy of beam, 40–41
equivalent square field (ESF), 182–183, 183t
 monitor unit calculation and, 248
timer calculation and, 244, 244f, 246
erythema dose, 78
excitation of electron, 9, 21, 22f, 68, 69f
exit dose, 101, 176–177
exponential function. See semi-logarithmic
graph
exposure
 roentgen unit of, 78–79, 85
 safety with radionuclides and, 313
exposure rate, 67–68, 79
 of brachytherapy source, 286–287
eye lesions
 proton therapy for, 138
 strontium-90-yttrium-90 sealed source
 for, 289, 312
f-factor, 84–86, 86t, 245
fiducial markers, 272
fiducial plates, 146–147
field, coordinate system for, 150–151, 152f, 153f, 154f
field lights. See light field
INDEX

field size
 asymmetric collimation and, 150
 collimator scatter and, 176
defined, 143, 176, 177f
depth of maximum dose and, 176
flatness and, 199
intensity-modulated radiation therapy and, 173
isocenter and, 157, 159, 161f
magnified image of, 144–147, 145f
patient attenuation factors and, 184–185
selection of, 220
source to skin distance and, 143–144, 143f, 164–165
tissue-air ratio and, 191, 192f
See also equivalent square field (ESF)
field size correction factor
 for electron beam, 210
 for photon beam, 181–182, 181f, 187–188, 190, 358f
field weighting, 260, 261f
field-within-a-field, 252, 252f
film, magnification factor of, 144–146, 145f
film badge, 304–305
filters
 compensating, 238, 239f, 240
 with conventional x-ray machines, 26–28, 27f, 82, 82t
 for electron contamination, 176
See also attenuation of photon beam; flattening filters; wedges
flatness
 of electron beam, 122
 of photon beam, 116, 118, 120, 198–199, 199f
 quality assurance checks of, 125–126, 125f
flattening filters, 115, 116f, 117f, 118, 120
horn region and, 199
photonuclear interaction in, 56
scatter from, 176
fluorescence, 68
focal spot size, 96
forces, 3
electrostatic, 3–4, 5f, 9
four-field box, 155, 156f, 232, 232f, 265
four-field diamond, 233, 233f
fractional depth dose (FDD), 186
fractionation, 177–178, 278
free electrons, 50, 52
frequency, 16–17
fused images, 220
Gamma Knife, 128
gamma rays, 11, 14, 14f
 from cobalt-60 beta decay, 129
 from radium, 278, 362–363, 363f
gamma-n interaction. See photonuclear interaction
gantry angle, 154, 155f
gantry angle indicator, 221
gantry rotations, and isocentricity, 163
gaps, in abutting fields, 147, 148f, 209
gas ionization detectors, 60–65
 appropriate uses of, 64–65, 65f, 66t
 basic mechanisms of, 60–61, 60f, 61f
 collection efficiency of, 61, 63
 moderated, as neutron dosimeters, 69
 operational regions of, 61, 62f
as survey meters, 65–68
See also Geiger (G–M) counters;
 ionization chambers; proportional counters
gated radiation therapy, 272–274
Geiger (G–M) counters, 60, 63–65, 65f, 66t
 as survey meters, 65–68, 67f
Geiger–Mueller region, 62f, 63
gold-198 (Au-198), 310–311, 311t
given dose, 176. See also incident dose (ID)
gold-198 (Au-198), 310–311, 311t
government regulations, 294, 320, 321.
 See also Nuclear Regulatory Commission (NRC)
gray (Gy), 79, 80, 83–84
 conventional x-ray machine calibration in, 80–82, 82t
 equivalent dose and, 295
 roentgen to cGy conversion factor, 85–86, 86t, 245
Index

Grenz rays, 27, 86t
gross tumor volume (GTV), 218, 219f
ground state, 9
gynecological malignancies
 brachytherapy applicators for, 281, 282f, 283f
 cesium-137 for, 310

H. See equivalent dose (H)
half-life, 360–362
half-value layer (HVL), 36, 38f, 39–41
 of shielding, 307, 308, 313–314
 values for common beams, 40t
 values for radionuclides, 311t
hardening of beam, 27, 39
head holders, 222
head leakage. See leakage radiation
heat energy, in x-ray tubes, 4, 31
heavy particle therapy, 14, 137–139, 139t
hinge angle, 242f, 243
homogeneity coefficient (HC), 39, 40t
homogeneous beam, 37, 39–40
horns (ears)
 of electron beam, 208
 of photon beam, 196f, 198f, 199
hot spots
 with abutting fields, 147, 148, 208
 beam weighting and, 260, 261f
 with breast tangents, 240, 257f, 258, 258f, 259f
 with oblique surfaces, 240, 242f, 243f
 of three-field wedged plan, 254
hydrogen atom, 10
hyperfractionation, 178

image-guided radiation therapy (IGRT), 272, 273f
immobilization devices, 222, 223f

implant. See brachytherapy
implant gun. See seed gun
incident dose (ID), 176, 177f, 186, 188.
 See also maximum dose (D_{max})
independent collimators, 118, 150
inelastic collisions, 20–21, 21f
inertia, 12
intensity of x-ray beam
 compared to dose, 99f, 100
 defined, 33
 divergence and, 33, 34, 34f
 See also attenuation of photon beam
intensity-modulated radiation therapy
 (IMRT), 173, 270–272, 271f
 with charged particle beams, 138
 leakage radiation with, 320
interference of waves, 107
interfield distances (IFD), 224, 225f
internal conversion, 365
International Commission on Radiological Protection (ICRP), 294, 296, 298
interstitial implants, 281
 after teletherapy, 284
 permanent, 284–285, 286f
 tumor volume and, 284, 285f
 See also brachytherapy
intracavitary implants, 281. See also brachytherapy
inventory, of brachytherapy sources, 314
inverse square law, 34, 34f, 165
 for brachytherapy source, 287
depth dose and, 186
electron beams and, 211, 214
 output calculation and, 181–182
 radiation protection and, 307, 309
tissue-air ratio and, 189, 190
tissue-maximum ratio and, 194
 See also divergence of photon beam
iodine-125, 311t, 365
iodine-125 implants, 284, 285, 286f, 310, 311
 for brain tumors, 289
iodine-131
 characteristics of, 311t, 359
 radiation safety with, 311–312, 314–315
ion pairs, 22
 in gas ionization detector, 60, 60f
ion recombination, 61, 62f
ionization, 9, 10, 22, 22f
ionization chamber region, 61, 62f
ionization chambers, 60–63, 60f
 appropriate uses of, 64, 66t
 Bragg-Gray cavity theory and, 86–87
 electrometers associated with, 79
 electron beam measurements with, 209
 materials used in, 62
 operational region of, 61, 62f
 portable (cutie pie), 64, 65, 65f, 66t, 68
 pressure dependence of, 80–81
 sensitivity of, 80–81
 temperature dependence of, 80–81
 thimble chamber, 61f, 62, 65f
See also monitor ionization chamber
ionization current, 60
ionization detectors. See Geiger
 (G-M) counters; ionization chambers; proportional counters
ionizing radiation, 7–8, 11, 12–13
iridium-192, 279, 280f, 284, 285f, 289
 characteristics of, 311t
 occupational exposure to, 310
irises, 106, 107f
irradiated volume, 218, 219f
irregularly shaped fields. See block(s); blocking
isocenter
 defined, 97, 157, 158f
 distance from source, 111, 112f, 113f, 157, 159
 field size and, 157, 159, 161f
 lasers pointing to, 163, 164f, 221–222
 normalization to, 263–264, 264f, 264t
isocentric machine, 97, 98f
isocentric technique, 159, 160f
 in intensity-modulated radiation therapy, 173
 with parallel opposed fields, 159, 161f, 162f, 163–164
 pinning in, 159–160, 163, 163f, 164f
 rotation of equipment for, 163–164
isodose curves, 196–197, 196f, 197f
 normalization to, 262–263, 263f
isodose distributions, 226–227, 226f, 227f
 of breast tangents, 256, 257f, 258, 258f, 259f
 of electron beams, 196, 197f, 208, 208f, 213–214, 213f
 of four-field box, 232, 232f
 of four-field diamond, 233, 233f
 of mixed beams, 255f, 257f
 normalization of, 260, 262–264, 262f, 263f, 264f, 264t
 with oblique incidence, 227–228, 228t, 229f, 240
 with rotational technique, 233–234, 234f, 235f
 summated, 229–230, 230f
 three-field, 231f, 232
 of vertex field, 253, 254f
 wedges and, 240, 241f, 242f, 243f
isodose shift
 oblique incidence and, 228, 228t, 229f
 tissue inhomogeneities and, 236t, 238
 isodose summations, 229–230, 230f
 isomeric transition, 365–366, 366f
 isotopes, 359–360
jaws, 112f, 113f, 118, 120, 121f
 compared to multileaf collimation, 171, 172f
 as dynamic wedge, 242, 258
 scattered radiation from, 176, 180
See also collimation
joule (J), 3–4, 11
Kelvin (K), 80, 81
kerma, 79–80. See also air kerma
kilo electron volt (keV), 11t
kinetic energy (KE), 4. See also air kerma; kerma
klystrons, 109, 110f, 111
kVp, 82, 82t
 lasers, 163, 164f, 221–222
 late effects, of radiation exposure, 296–297
 latent period, for tumor formation, 297
INDEX

lattice, crystal, 70, 70f
lead
 Cerrobend compared to, 170t, 171
 mass attenuation coefficient of, 46, 46f
lead blocks
 with electron beams, 210
 with photon beams, 170t, 171
lead cutout, 244, 244f
leakage radiation, 316, 319–320, 321
length, units of, 2, 3t
light field, 221
 blocking and, 166f, 167, 167f
line spectrum, 23–24, 23f
 of cobalt-60 beta decay, 128
linear accelerators, 103–126
 angular spread of beam, 29
 basic principle of, 104, 105f
 with bent-beam design, 112, 113f, 114
 on board imagers of, 272
 control console of, 124
 depth dose tables for, 352t–355t
 dose to therapist working with, 320–321
 dual energy, 254
 early development of, 104
 helical technology for, 123
 initial testing of, 320
 penumbra with, 132–133, 133t
 power sources of, 109, 110f, 111
 quality assurance for, 124–126, 125t
 radiation safety with, 316–321, 318f, 319f
 radioactivity induced in accessories of, 56, 320–321
 safety interlocks of, 122, 124, 125–126, 125t
 state regulation of, 294
 with straight-through design, 111–112, 112f
 target of, 30, 115, 116f
 tissue-maximum ratio, table of, 357t
 waveguides of, 105–109, 105f, 107f, 108f, 109f
See also isocenter; isocentric technique; megavoltage x-ray beams
linear attenuation coefficient, 36–37, 39–40, 41–42, 41t, 42t
linear dose response model, 297–298, 297f, 299, 299f
linear energy transfer (LET), 12
 of alpha particles, 63
 of heavy particle beams, 137
 quality factor and, 89–90, 89t
linear-quadratic model, 298, 299f
lithium fluoride detectors, 69, 71–72, 72f
liver metastases, yttrium-90 microspheres for, 312–313
localization. See simulation (localization)
low dose rate (LDR) brachytherapy, 288
lung tissue, 42
machine output, 245
magnet, bending, 112, 113f, 114
magnetic fields
 charged particles in, 12, 13f
 of electromagnetic waves, 15, 16f
magnetrons, 109, 110f, 111
magnification, 144–147
 of non-midplane anatomy, 149–150
mammography, photoelectric effect in, 50
Manchester System, 281
mass
 acceleration and, 3
 of subatomic particles, 12, 13t
 units of, 2, 3t
mass attenuation coefficient, 41–42, 42t, 43f, 46–47, 46f
 for four major interactions, 54f, 55
 pair production and, 53
mass density. See density
mass energy absorption coefficient, 57, 57f, 84, 85t
mass number (A), 10, 359
matter, 1–2
maximum dose (D_{max}), 100, 176
 normalization to, 262, 262f
See also depth of maximum dose (d_{max}); incident dose (ID)
maximum energy, in photon beam, permissible exposure and, 317
maximum permissible doses (MPDs), 302–304, 303t
maximum value in target volume, 262
Mayneord’s factor, 188
medical and dental x-ray exposure, 300t, 301–302, 303
medical event, with cobalt-60 machine, 136
mega electron volt (MeV), 11t
megavoltage x-ray beams, 28
advantages of, 98–101
characterization of, 41
Compton effect with, 52
direction of, 29, 29f, 30, 30f
disadvantages of, 101
isodose curves for, 227, 227f
roentgen to cGy conversion factor for, 86t
See also cobalt-60 machines; linear accelerators
megavoltage x-ray tubes, heat production in, 31
metric system, 2, 3t
mg-radium equivalent, 279, 286, 288
midline, 149, 149f
midplane, 149, 149f
milligram-hour of radium, 281, 286
mirror images, in isocentric treatment, 163–164
mixed beams, 253–256, 255f, 256f, 257f
mmHg, 80
monitor ionization chamber, 120, 122–123, 123f
backscattering to, 180
quality assurance checks of, 125t, 126
scattered radiation from, 176
monitor units, 244
with electron beams, 209–211
field size and, 180, 182
monitor chamber and, 122
tumor dose and, 187–188, 190, 194, 195, 247–248
monoenergetic beam, 37, 39
Monte Carlo algorithms, 214
MOSFET detectors, 74
motion, patient gating and, 272–274
positioning devices and, 222, 223f
mouthpiece, custom, 222, 223f
moving (dynamic) fields, 233–234, 234f, 235f
multileaf collimators (MLCs), 118, 171, 171f, 172f, 173, 270–271
leakage radiation with, 320
with proton beams, 138
muscle attenuation and absorption coefficients for, 57, 57f
f-factor for, 85–86, 86t
National Council on Radiation Protection and Measurements (NCRP), 294, 296, 305, 317
negative ion, 10, 22
negatron, 53
neutron beams, 14, 138–139, 139t
neutron dosimeters, 69
neutrons, 10, 11, 13t
from photonuclear interaction, 55–56, 55f, 320
newton (N), 3
non-contact cones, 120, 214
non-coplanar beams, 265, 265f, 266f
non-midplane structures, 149
normalization of depth dose, 185–186
of dose distribution, 260, 262–264, 262f, 263f, 264f
Nuclear Regulatory Commission (NRC), 294, 304, 305
brachytherapy requirements of, 314–315
cobalt-60 machines and, 134–136, 320
iodine-131 and, 311
survey meters and, 66–67
nuclides, 10
nucleus, 8–9, 8f, 10
isomeric transition of, 365–366, 366f
nuclide, 359
oblique incidence, 227–228, 228t, 229f, 240
occupancy factor, 317–318
occupational dose
 internal, 303–304
 measurement of, 295–296
 recommended limits, 296, 302–304, 303t
 See also radiation safety
occupational radiation risk, 298–301
off-axis points, 176
off-axis ratio (OAR), 199
off-center ratio (OCR), 199
off-cord boost field, 151f
on board imagers (OBI), 272
orthogonal images, 151, 154f, 220
for brachytherapy, 283
orthovoltage x-ray beams
 Compton effect with, 52
 filtration of, 27–28, 27f, 82, 82t
 isodose curves for, 227, 227f
 transmission curves of, 38f
 tube design for, 29–30
orthovoltage x-ray machines
 calibration of, 80–82, 81f, 82t
 disadvantages of, 94–97
 leakage radiation with, 320
 time calculation for, 244–246
 timer error with, 130–132, 132f
output
 of conventional x-ray units, 82, 82t
 field size and, 180–182, 181f
 machine, 245
over-responding G–M tube, 64
ovoids, 281, 282f, 283f

pair annihilation, 54f, 55, 365
pair production, 53, 54f, 56, 56f
palladium–103 (Pd–103), 310–311, 311t
parallel opposed fields (POF), 155, 156f
 isocenter position for, 159, 161f, 162f
 isodose distributions of, 229–230, 230f, 231–232
 misaligned, 258, 259f
 monitor unit calculation for, 247–248
rotation of equipment for, 163–164
tangential, 155, 157f
unequally weighted, 260, 261f
particulate radiation, 12–14, 13t
dose equivalent of, 88–90
 See also charged particles
pascal, 80
past pointing, 235, 235f
Paterson-Parker technique, 288
patient alignment devices, 221–222
patient attenuation factors, 184–185. See also specific factors
patient positioning aids, 222, 223f
patient support assembly (PSA). See table
peak scatter factor (PSF). See backscatter factor (BSF)
pencil electron beam, 114f, 115
penumbra, 15
 with cobalt-60 machines, 132–134, 133t, 134f
 defined, 197, 198f
 geometric, 95–96, 97f
 multileaf collimation and, 171, 171f
 physical, 96
penumbra trimmers, 132–133, 134f
percent depth dose (PDD)
 defined, 186
 of neutrons vs. photons, 138, 139t
 vs. photon beam energy, 94–95, 95f, 96f, 100t
 See also depth dose (DD)
period, of a wave, 16
permanent implants, 284–285, 286f
radiation safety with, 289
 See also brachytherapy
personnel monitoring, 304–306, 321
phantom attenuation. See patient attenuation factors
phosphorescence, 68
phosphorus–32, 311t, 312, 315, 364, 365f
photodisintegration. See photonuclear interaction
photoelectric effect, 48–50, 49f, 54f
 absorption coefficient and, 57
 in film badge, 305
 as proportion of interactions, 56, 56f
photoelectron, 48
photon beams. See x-ray beams
photon contamination, 206–207
photons, 14, 17
photonuclear interaction, 55–56, 55f, 56f
dose to therapist and, 320–321
radiation survey and, 320
physical penumbra, 96
pinning, 159–160, 163, 163f, 164f, 173
π-mesons, 13t, 14
planes, description of, 150–154, 152f, 153f, 154f
planning target volume (PTV), 218, 219f, 224
plaques, 289
polarization voltage, 61, 62f
polyenergetic beam, 38f, 39
portal images, 220, 221
contrast in, 52
magnification of, 144
positioning of patient
aids for, 222, 223f
image-guided, 272, 273f
during simulation, 220
positive ion, 10, 22
positrons, 10, 11, 13, 364–365, 365f
annihilation of, 54f, 55, 365
in pair production, 53, 54f
potential energy (PE), 4
practical range, 207
pre-annealing, of thermoluminescent
dosimeters, 72
pre-calculated system of dosimetry, 288
pregnancy
occupational dose limits, 303t, 304
radiation risk in, 301–302
of visitor to patient, 314
prescribed dose, 218. See also tumor dose (TD)
prescription, for cobalt–60 treatment, 135–136
primary barrier, 316, 318–319
primary dose, 179
primary radiation, 178–179, 191, 316
principal quantum numbers, 9
probe, of gas ionization detector, 60
profiles. See beam profiles
proportional counter region, 62f, 63
proportional counters, 60, 63, 63f, 64, 66t
prostate cancer
conformal treatment of, 268f, 269, 270f
four-field box for, 232
seeds for, 285, 286f, 311
three-dimensional treatment planning
for, 267f, 268f
proton beams, 14, 136–137, 136f, 138
protons, 10, 11, 13t
protractor, 221
quality assurance (QA)
of cobalt–60 machines, 134–136
for intensity-modulated radiation
therapy, 272
laser alignment in, 222
of linear accelerators, 124–126, 125t
quality factor (Q), 89–90, 89f, 295
quenching agents, 64
Quimby technique, 288
rad, 83–84, 295. See also absorbed dose
roentgen to rad conversion factor,
85–86, 245
radiation, defined, 7
radiation detectors
diode detectors, 73–74, 74f
introduction to, 59–60
MOSFET detectors, 74
neutron dosimeters, 69
scintillation detectors, 68, 69f
thermoluminescent dosimeters, 69–73,
70f, 71f, 72f, 73f, 305
See also gas ionization detectors
radiation oncologist, 218, 220, 224
radiation risk, 296–302
compared to other risks, 299–301,
300t
dose response models, 297–299, 297f, 299f
late effects, 296–297
occupational, 298–301
radiation risk (cont.)
of in utero exposure, 301–302
radiation safety, 293–324
in brachytherapy, 283, 288, 289, 310–315
 cardinal principles of, 306–309, 309f
 with cobalt-60 machines, 130, 133–134, 135–136, 135t, 316–321
detectors used for, 65, 66t, 69, 70, 71–72, 72f
 for general public, 303t, 301
 government regulations for, 294, 320, 321.
 See also Nuclear Regulatory Commission (NRC)
 with linear accelerators, 316–321, 318f, 319f
 maximum permissible doses, 302–303, 303t
 occupational dose measurements in, 295–296
 personnel monitoring, 304–306, 321
 with radioactive materials, 310–315
 signs used in, 314, 321, 322f
radiation safety officer (RSO)
cobalt-60 machine and, 130, 134, 135t
personnel monitoring and, 306, 321
radionuclide contamination and, 315
radiation safety with, 310–315
spills of, 315
radiosurgery, with Gamma Knife, 128
radium–226, 278, 280f, 310, 311f
 alpha decay of, 362–363, 363f
 milligram-hour of, 281, 286
 state regulation of, 294
radium equivalent, 279, 286, 288
radon gas, 310, 362, 363
ram tables, 112
raw electron beam, 114f, 115
recordable event, with 60Co machine, 136
reduced fields, 252
reflection target, 29, 30f, 31
rem, 89, 295
remote afterloading, 288
rest energy, of subatomic particles, 12, 13t
ring badge, 305, 321
roentgen (R), 78–79
 absorbed dose and, 83
 calibration in, 80
roentgen to cGy (or rad) conversion factor, 85–86, 86t, 245
rotational technique, 199–201, 200f, 200t, 233–234, 234f, 235f
SAD technique, 159, 160f
safety. See radiation safety
safety interlocks, of linear accelerator, 122, 124, 125–126, 125t
sagittal plane, 224, 225f
samarium–153, 312
satellite collimators, 133, 134f
scanning of beam
 with electrons, 120, 121f, 122
 with heavy particles, 138
scatter-air ratio (SAR), 191–194, 192f
scattered dose, 179
scattered radiation
 attenuation of beam and, 35, 47, 57
 coherent, 47–48, 47f, 54f, 56f, 57
 from collimation system, 176
 field size correction and, 180
 from patient or phantom, 178–179
 protection from, 52, 316, 319, 320
 See also backscatter; Compton scattering
INDEX

scattering foils, 119–120, 119f, 122
 for proton beams, 138
scintillation detectors, 68, 69f
sealed sources, 279, 280f
secondary barrier, 316, 318, 319–320
secondary electrons, 12, 79
 dose build-up and, 99, 99f
secondary ionization events, 62–63
secondary radiation, 178–179, 316,
 319–320
seed gun, 285, 286f, 310
semi-logarithmic graph
 of beam attenuation, 37, 37f, 38f, 39
 of radioactive decay, 360, 361f
separations, of body contour, 224
shadow tray. See block tray
shells, of Bohr atom, 8–9, 8f, 9f
shielding, 307–309, 309f, 316–320, 318f,
 319f
 Compton scattering and, 50, 52
 for gamma-emitting radionuclides,
 313–314
See also block(s)
shrinking fields, 252
SI system of units, 2
 prefixes in, 325–326
side-coupled standing waveguide accelerate-
 tor, 109f
sievert (Sv), 89, 295
sigmoidal dose response relationships,
 297, 297f
similar triangles, 142–144, 142f, 165
simulation (localization), 220
 body contour and, 222, 224
 for brachytherapy, 283
 Compton scatter in, 52
single plane implant, 284, 285f
skin dose, measurement of, 72, 73f
skin erythema dose, 78
skin gaps, with abutting fields, 147–148,
 148f
skin sparing, 98–99, 99f, 100, 101
 collimator scatter and, 176
 electron beams and, 206
 oblique incidence and, 229
 tissue compensation and, 238, 240
skip arc therapy, 233
source to axis distance (SAD), 111, 112f,
 113f, 176, 177f
 approach based on, 159, 160f
 film image and, 145–146, 145f
source to collimator distance (SCD), 96
source to diaphragm distance (SDD), 96,
 97f
source to film distance (SFD), 145–146,
 145f
 custom blocks and, 168, 169f
source to object distance (SOD),
 145–146
source to skin distance (SSD), 96, 97, 97f,
 176, 177f
 approach based on, 159–160, 160f
 blocked dimensions and, 165
 depth dose and, 186–187, 186f, 187t,
 188, 190
 electron beam intensity and, 210–211,
 214
 field size and, 143–144, 143f, 164–165
sources
 brachytherapy, 279, 280f, 281, 289
 in cobalt-60 machines, 128–130, 129f
 spatial dispersion of beam, 114
 specific gamma ray constant, 279t,
 286–287, 313
 specific ionization, 12
 spectrum
 of characteristic radiation, 23, 23f
 electromagnetic, 14–15, 14f
 x-ray, 25–26, 25f
 speed of light, 16
spills of radioactive materials, 315
SSD technique, 159–160, 160f
standing wave accelerator, 106–107, 108f,
 109, 109f
state regulations, 294, 320, 321
stationary (fixed beam) treatment,
 230–233, 230f, 231f, 232f, 233f
stereotactic radiosurgery, 118, 265, 266f
strong nuclear force, 10
strontium-89, 311f, 312
strontium-90-yttrium-90 sealed source,
 289, 312
Styrofoam block and mold, 168, 169f,
 170
INDEX

subatomic particles, 10–11, 13–14, 13t
summed distribution, 229–230, 230f
summed percentage, 229
superficial x-rays, 27
 calibration of machines for, 80–82, 81f
 roentgen to cGy conversion factor for, 86t
timer error with, 130–132, 132f
tube design for, 29–30, 31
survey. See radiation survey
symbols, 325–326
symmetry
 of electron beam, 122
 of photon beam, 117f, 118, 197–198, 198f, 199
quality assurance checks of, 125–126, 125t
synchrocyclotron, 137
synchrotron, 137
table, 111–112, 112f
 attenuation factors for, 183, 184
 rotation of, 163–164
 shift of, 160, 163, 163f, 164f
tandem, 281, 282f, 283f
tangent fields, 155, 157f
dose distributions with, 240, 256, 257f, 258, 258f, 259f
 pins and shifts with, 163, 163f, 164f
target, x-ray, 29–31, 30f
 heat production in, 31
 of linear accelerator, 30, 115, 116f
target to film distance (TFD), 168
target volume
 clinical, 218, 219, 219f, 220
 planning, 218, 219f, 224
Task Group 51 protocol, 87, 209
tattoos, 221
technetium-99m, 365–366, 366f
teletherapy, 278
temporary implants, 281. See also brachytherapy
tenth-value layer (TVL), 307–309, 309f
thermoluminescence, 70, 71f
thermoluminescent dosimeters (TLDs), 69–73, 70f, 71f, 72f, 73f
 for personnel monitoring, 305
 standard procedure with, 72–73
thick target, 30
thick transmission target, 30
thimble chamber, 61f, 62, 65f
Thomson scatter. See coherent scatter
Thoraeus filter, 27–28, 27f
three–dimensional treatment planning
 (3-D RTP), 267–269, 267f, 268f
time, in radiation protection, 306, 308–309
timer error (TE), 130–132, 132f, 245–246
timer settings, 244–246, 248
 tissue compensation, 238–240, 239f
 tissue inhomogeneities, 228, 235–238, 236t, 237f
tissue-air ratio (TAR), 184–185, 188–194, 189f, 192f
 in rotational technique, 199–201, 200t
table of, for cobalt-60, 356t
tissue-maximum ratio (TMR), 184–185, 194–195, 195f
table of, for 6 MV beam, 357t
tissue-phantom ratio (TPR), 194
 tissues
 attenuation by, 42
 Compton scatter in, 52
 toe, of wedge, 240, 241f
tomotherapy, 123
torr, 80
total effective dose equivalent (TEDE), 303
total length, of sealed source, 279, 280f
transmission factor, in barrier design, 317–318, 319f
transmission of photon beam, 35, 36f, 37, 37f, 38f, 39, 47
transmission target, 30–31, 30f
transverse plane, 224, 225f
 traps, in thermoluminescent crystal, 70, 71f, 72
travel time correction. See timer error (TE)
traveling wave accelerator, 105f, 106

treated volume (TV), 218, 219f
treatment planning
 aims of, 218–219
 beam on time calculations, 243–246
 components of, 220–221
 computers in, 201
 documentation of, 219, 221
 for electron beams, 213–214, 213f
 errors in, 224
 gating in, 272–274
 imaging in, 220, 221
 for intensity-modulated therapy, 173
 monitor unit calculations, 244, 247–248
 orthogonal images in, 151, 154f, 220
 three-dimensional, 267–269, 267f, 268f
 tissue inhomogeneities and, 213–214, 213f, 228, 235–238, 236f, 237f
 volume definitions in, 218, 219f
 See also isodose distributions; simulation (localization); tumor dose (TD)
 triangulation, 163, 164f
 trimmer bars, 133, 134f
 tumor dose (TD), 187–188, 190, 194, 195, 218, 247–248
 tumor volume, 218, 219, 219f
 dose-volume histograms for, 269, 269f, 270f
 interstitial implants and, 284, 285f

uncontrolled area, 317, 318, 319
under-responding G–M tube, 64
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 298
United States Nuclear Regulatory Commission. See Nuclear Regulatory Commission (NRC)
units, 327–329
 for mass, length, and time, 2, 3t
for radiation. See gray (Gy); rad; rem; roentgen (R)
universal wedge, 240
use factor, 317–318
valence band, 70, 71f
velocity, 2, 4
verification of treatment, 221
vertex field, 253, 253f, 254f, 265
virtual wedge, 242
visualization, 220
volume, 2. See also target volume; tumor volume
volume implant, 284
water
 Compton scatter in, 52, 56, 56f
 f-factor for, 85–86, 86t
 mass attenuation coefficient of, 46, 46f, 54f, 55
 photon interactions with, 56, 56f
 water equivalent path length, 236–238
 water phantom, for depth dose measurement, 185, 185f
 waveguides, 105–109, 105f, 107f, 108f, 109f
 wavelength, 16–17
 wave–particle duality, 15
 wedge angle, 240, 242
effective, 240, 242, 258
wedge pairs, 242f, 243
wedges, 240–243, 241f, 242f, 243f
flipped inadvertently, 258, 259f
monitor unit calculation with, 248
scattered radiation from, 176
weighting of beams, 260, 261f
whole body badge, 305–306
whole body dose, 295–296, 321
wipe tests, of cobalt-60 sources, 130
work, 3, 4
workload, 316–318
written directive, for cobalt-60 treatment, 135–136

x-ray beams
 direction of, 28–30, 28f, 29f, 30f
 edges of, 143, 198f, 199
x-ray beams (cont.)

intensity of, 33, 34, 34f, 99f, 100

target and, 29–31, 30f, 115, 116f

See also beam profiles; collimation;

divergence of x-ray beam; megavoltage x-ray beams; orthovoltage

x-ray beams

x-ray tail, 206–207, 206f

x-ray tubes

conventional x-ray output of, 82, 82t

diagnostic, 29, 30f, 31

ergy changes in, 4

heating characteristics of, 4, 31

targets of, 29–31, 30f, 115, 116f

x-rays, 14, 14f, 19–20

energy range of, in radiation therapy, 11

spectrum of, 25–26, 25f

yttrium-90

characteristics of, 311t

as microspheres, 312–313

with strontium-90 in sealed source, 289, 312

Z. See atomic number (Z)